IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i10p216-d277530.html
   My bibliography  Save this article

A Survey on LoRaWAN Architecture, Protocol and Technologies

Author

Listed:
  • Mehmet Ali Ertürk

    (IT Department, İstanbul University, 34116 İstanbul, Turkey)

  • Muhammed Ali Aydın

    (Computer Engineering Department, İstanbul University-Cerrahpaşa, 34320 İstanbul, Turkey)

  • Muhammet Talha Büyükakkaşlar

    (Computer Engineering Department, İstanbul University-Cerrahpaşa, 34320 İstanbul, Turkey)

  • Hayrettin Evirgen

    (Open and Distance Education Faculty, İstanbul University, 34126 İstanbul, Turkey)

Abstract

Internet of Things (IoT) expansion led the market to find alternative communication technologies since existing protocols are insufficient in terms of coverage, energy consumption to fit IoT needs. Low Power Wide Area Networks (LPWAN) emerged as an alternative cost-effective communication technology for the IoT market. LoRaWAN is an open LPWAN standard developed by LoRa Alliance and has key features i.e., low energy consumption, long-range communication, builtin security, GPS-free positioning. In this paper, we will introduce LoRaWAN technology, the state of art studies in the literature and provide open opportunities.

Suggested Citation

  • Mehmet Ali Ertürk & Muhammed Ali Aydın & Muhammet Talha Büyükakkaşlar & Hayrettin Evirgen, 2019. "A Survey on LoRaWAN Architecture, Protocol and Technologies," Future Internet, MDPI, vol. 11(10), pages 1-34, October.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:10:p:216-:d:277530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/10/216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/10/216/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerima Saleh Abakar & Ismail Bennis & Abdelhafid Abouaissa & Pascal Lorenz, 2022. "A Multi-Gateway Behaviour Study for Traffic-Oriented LoRaWAN Deployment," Future Internet, MDPI, vol. 14(11), pages 1-15, October.
    2. Patricia Franco & José M. Martínez & Young-Chon Kim & Mohamed A. Ahmed, 2022. "A Cyber-Physical Approach for Residential Energy Management: Current State and Future Directions," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    3. Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
    4. Rami Ahmad, 2024. "Smart remote sensing network for disaster management: an overview," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(1), pages 213-237, September.
    5. B. Shilpa & Hari Prabhat Gupta & Rajesh Kumar Jha & Syed Shakeel Hashmi, 2024. "LoRa interference issues and solution approaches in dense IoT networks: a review," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(2), pages 517-539, October.
    6. Pavel Masek & Martin Stusek & Ekaterina Svertoka & Jan Pospisil & Radim Burget & Elena Simona Lohan & Ion Marghescu & Jiri Hosek & Aleksandr Ometov, 2021. "Measurements of LoRaWAN Technology in Urban Scenarios: A Data Descriptor," Data, MDPI, vol. 6(6), pages 1-20, June.
    7. Bernhard Koelmel & Max Borsch & Rebecca Bulander & Lukas Waidelich & Tanja Brugger & Ansgar Kuehn & Matthias Weyer & Luc Schmerber & Michael Krutwig, 2023. "Quantifying the Economic and Financial Viability of NB-IoT and LoRaWAN Technologies: A Comprehensive Life Cycle Cost Analysis Using Pragmatic Computational Tools," FinTech, MDPI, vol. 2(3), pages 1-17, July.
    8. Evangelos Syrmos & Vasileios Sidiropoulos & Dimitrios Bechtsis & Fotis Stergiopoulos & Eirini Aivazidou & Dimitris Vrakas & Prodromos Vezinias & Ioannis Vlahavas, 2023. "An Intelligent Modular Water Monitoring IoT System for Real-Time Quantitative and Qualitative Measurements," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    9. Poonam Maurya & Aatmjeet Singh & Arzad Alam Kherani, 2022. "A review: spreading factor allocation schemes for LoRaWAN," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(3), pages 449-468, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:10:p:216-:d:277530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.