IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.05327.html
   My bibliography  Save this paper

Neural Network Models for Stock Selection Based on Fundamental Analysis

Author

Listed:
  • Yuxuan Huang
  • Luiz Fernando Capretz
  • Danny Ho

Abstract

Application of neural network architectures for financial prediction has been actively studied in recent years. This paper presents a comparative study that investigates and compares feed-forward neural network (FNN) and adaptive neural fuzzy inference system (ANFIS) on stock prediction using fundamental financial ratios. The study is designed to evaluate the performance of each architecture based on the relative return of the selected portfolios with respect to the benchmark stock index. The results show that both architectures possess the ability to separate winners and losers from a sample universe of stocks, and the selected portfolios outperform the benchmark. Our study argues that FNN shows superior performance over ANFIS.

Suggested Citation

  • Yuxuan Huang & Luiz Fernando Capretz & Danny Ho, 2019. "Neural Network Models for Stock Selection Based on Fundamental Analysis," Papers 1906.05327, arXiv.org.
  • Handle: RePEc:arx:papers:1906.05327
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.05327
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinho Lee & Sungwoo Park & Jungyu Ahn & Jonghun Kwak, 2022. "ETF Portfolio Construction via Neural Network trained on Financial Statement Data," Papers 2207.01187, arXiv.org.
    2. Wei Pan & Jide Li & Xiaoqiang Li, 2020. "Portfolio Learning Based on Deep Learning," Future Internet, MDPI, vol. 12(11), pages 1-13, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.05327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.