IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i2p14-265d1363667.html
   My bibliography  Save this article

Predictive Maintenance Framework for Fault Detection in Remote Terminal Units

Author

Listed:
  • Alexios Lekidis

    (Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500 Larissa, Greece)

  • Angelos Georgakis

    (Public Power Corporation, Chalkokondili 22, 10432 Athens, Greece)

  • Christos Dalamagkas

    (Public Power Corporation, Chalkokondili 22, 10432 Athens, Greece)

  • Elpiniki I. Papageorgiou

    (Department of Energy Systems, University of Thessaly, Gaiopolis Campus, 41500 Larissa, Greece)

Abstract

The scheduled maintenance of industrial equipment is usually performed with a low frequency, as it usually leads to unpredicted downtime in business operations. Nevertheless, this confers a risk of failure in individual modules of the equipment, which may diminish its performance or even lead to its breakdown, rendering it non-operational. Lately, predictive maintenance methods have been considered for industrial systems, such as power generation stations, as a proactive measure for preventing failures. Such methods use data gathered from industrial equipment and Machine Learning (ML) algorithms to identify data patterns that indicate anomalies and may lead to potential failures. However, industrial equipment exhibits specific behavior and interactions that originate from its configuration from the manufacturer and the system that is installed, which constitutes a great challenge for the effectiveness of ML model maintenance and failure predictions. In this article, we propose a novel method for tackling this challenge based on the development of a digital twin for industrial equipment known as a Remote Terminal Unit (RTU). RTUs are used in electrical systems to provide the remote monitoring and control of critical equipment, such as power generators. The method is applied in an RTU that is connected to a real power generator within a Public Power Corporation (PPC) facility, where operational anomalies are forecasted based on measurements of its processing power, operating temperature, voltage, and storage memory.

Suggested Citation

  • Alexios Lekidis & Angelos Georgakis & Christos Dalamagkas & Elpiniki I. Papageorgiou, 2024. "Predictive Maintenance Framework for Fault Detection in Remote Terminal Units," Forecasting, MDPI, vol. 6(2), pages 1-27, March.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:2:p:14-265:d:1363667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/2/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/2/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chatfield, Chris, 1986. "Exploratory data analysis," European Journal of Operational Research, Elsevier, vol. 23(1), pages 5-13, January.
    2. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    6. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    9. Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    11. Nadire Cavus & Yakubu Bala Mohammed & Mohammed Nasiru Yakubu, 2021. "An Artificial Intelligence-Based Model for Prediction of Parameters Affecting Sustainable Growth of Mobile Banking Apps," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    12. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    15. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Xiaojia Wang & Ting Huang & Keyu Zhu & Xibin Zhao, 2022. "LSTM-Based Broad Learning System for Remaining Useful Life Prediction," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
    17. Zhou, Kai-Li & Cheng, De-Jun & Zhang, Han-Bing & Hu, Zhong-tai & Zhang, Chun-Yan, 2023. "Deep learning-based intelligent multilevel predictive maintenance framework considering comprehensive cost," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    19. Bae, Jinwoo & Xi, Zhimin, 2022. "Learning of physical health timestep using the LSTM network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:2:p:14-265:d:1363667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.