IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i9p761-d78513.html
   My bibliography  Save this article

High-Resolution Wave Energy Assessment in Shallow Water Accounting for Tides

Author

Listed:
  • Dina Silva

    (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Eugen Rusu

    (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Carlos Guedes Soares

    (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal)

Abstract

The wave energy in a shallow water location is evaluated considering the influence of the local tide and wind on the wave propagation. The target is the coastal area just north of the Portuguese city of Peniche, where a wave energy converter operates on the sea bottom. A wave modelling system based on SWAN has been implemented and focused on this coastal environment in a multilevel computational scheme. The first three SWAN computational belonging to this wave prediction system were defined using the spherical coordinates. In the highest resolution computational domain, Cartesian coordinates have been considered, with a resolution of 25 m in both directions. An in-depth analysis of the main characteristics of the environmental matrix has been performed. This is based on the results of eight-year model system simulations (2005–2012). New simulations have been carried out in the last two computational domains with the most relevant wave and wind patterns, considering also the tide effect. The results show that the tide level, together with the wind intensity and direction, may influence to a significant degree the wave characteristics. This especially concerns the wave power in the location where the wave converter operates.

Suggested Citation

  • Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2016. "High-Resolution Wave Energy Assessment in Shallow Water Accounting for Tides," Energies, MDPI, vol. 9(9), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:761-:d:78513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/9/761/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/9/761/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    2. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Wave energy conditions in the western French coast," Renewable Energy, Elsevier, vol. 62(C), pages 155-163.
    3. Mackay, Edward B.L. & Bahaj, AbuBakr S. & Challenor, Peter G., 2010. "Uncertainty in wave energy resource assessment. Part 1: Historic data," Renewable Energy, Elsevier, vol. 35(8), pages 1792-1808.
    4. Silva, Dina & Bento, A. Rute & Martinho, Paulo & Guedes Soares, C., 2015. "High resolution local wave energy modelling in the Iberian Peninsula," Energy, Elsevier, vol. 91(C), pages 1099-1112.
    5. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    6. Rute Bento, A. & Martinho, Paulo & Guedes Soares, C., 2015. "Numerical modelling of the wave energy in Galway Bay," Renewable Energy, Elsevier, vol. 78(C), pages 457-466.
    7. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    8. Mackay, Edward B.L. & Bahaj, AbuBakr S. & Challenor, Peter G., 2010. "Uncertainty in wave energy resource assessment. Part 2: Variability and predictability," Renewable Energy, Elsevier, vol. 35(8), pages 1809-1819.
    9. Rusu, Eugen & Guedes Soares, C., 2012. "Wave energy pattern around the Madeira Islands," Energy, Elsevier, vol. 45(1), pages 771-785.
    10. Hashemi, M. Reza & Neill, Simon P., 2014. "The role of tides in shelf-scale simulations of the wave energy resource," Renewable Energy, Elsevier, vol. 69(C), pages 300-310.
    11. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Assessment of wave energy in the Canary Islands," Renewable Energy, Elsevier, vol. 68(C), pages 774-784.
    12. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    13. Dalton, G.J. & Alcorn, R. & Lewis, T., 2010. "Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America," Renewable Energy, Elsevier, vol. 35(2), pages 443-455.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2018. "Assessment of the Potential of Energy Extracted from Waves and Wind to Supply Offshore Oil Platforms Operating in the Gulf of Mexico," Energies, MDPI, vol. 11(5), pages 1-25, April.
    2. Carlo Lo Re & Giorgio Manno & Giuseppe Ciraolo & Giovanni Besio, 2019. "Wave Energy Assessment around the Aegadian Islands (Sicily)," Energies, MDPI, vol. 12(3), pages 1-20, January.
    3. Rusu, Liliana, 2020. "A projection of the expected wave power in the Black Sea until the end of the 21st century," Renewable Energy, Elsevier, vol. 160(C), pages 136-147.
    4. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    5. Eugen Rusu, 2018. "Numerical Modeling of the Wave Energy Propagation in the Iberian Nearshore," Energies, MDPI, vol. 11(4), pages 1-18, April.
    6. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.
    7. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    8. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    9. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    2. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2018. "A 33-year hindcast on wave energy assessment in the western French coast," Energy, Elsevier, vol. 165(PB), pages 790-801.
    3. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Assessment of wave energy in the Canary Islands," Renewable Energy, Elsevier, vol. 68(C), pages 774-784.
    4. Sierra, Joan Pau & White, Adam & Mösso, Cesar & Mestres, Marc, 2017. "Assessment of the intra-annual and inter-annual variability of the wave energy resource in the Bay of Biscay (France)," Energy, Elsevier, vol. 141(C), pages 853-868.
    5. Ramos, V. & Ringwood, John V., 2016. "Exploring the utility and effectiveness of the IEC (International Electrotechnical Commission) wave energy resource assessment and characterisation standard: A case study," Energy, Elsevier, vol. 107(C), pages 668-682.
    6. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    7. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    8. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Wave energy conditions in the western French coast," Renewable Energy, Elsevier, vol. 62(C), pages 155-163.
    9. Rute Bento, A. & Martinho, Paulo & Guedes Soares, C., 2015. "Numerical modelling of the wave energy in Galway Bay," Renewable Energy, Elsevier, vol. 78(C), pages 457-466.
    10. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    11. Sierra, J.P. & Casas-Prat, M. & Campins, E., 2017. "Impact of climate change on wave energy resource: The case of Menorca (Spain)," Renewable Energy, Elsevier, vol. 101(C), pages 275-285.
    12. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    13. Rusu, Eugen & Onea, Florin, 2016. "Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands," Renewable Energy, Elsevier, vol. 85(C), pages 687-703.
    14. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    15. Guillou, Nicolas & Chapalain, Georges, 2015. "Numerical modelling of nearshore wave energy resource in the Sea of Iroise," Renewable Energy, Elsevier, vol. 83(C), pages 942-953.
    16. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2020. "Wave energy assessment based on a 33-year hindcast for the Canary Islands," Renewable Energy, Elsevier, vol. 152(C), pages 259-269.
    17. Alonso, Rodrigo & Solari, Sebastián & Teixeira, Luis, 2015. "Wave energy resource assessment in Uruguay," Energy, Elsevier, vol. 93(P1), pages 683-696.
    18. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    19. Bento, A. Rute & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy assessement for Northern Spain from a 33-year hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 322-333.
    20. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:761-:d:78513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.