IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1631-d226949.html
   My bibliography  Save this article

Compliance of a Generic Type 3 WT Model with the Spanish Grid Code

Author

Listed:
  • Raquel Villena-Ruiz

    (Renewable Energy Research Institute and DIEEAC-ETSII-AB, Universidad de Castilla-La Mancha, 02071 Albacete, Spain)

  • Francisco Jiménez-Buendía

    (Siemens Gamesa Renewable Energy, S.A., 31621 Pamplona, Spain)

  • Andrés Honrubia-Escribano

    (Renewable Energy Research Institute and DIEEAC-ETSII-AB, Universidad de Castilla-La Mancha, 02071 Albacete, Spain)

  • Ángel Molina-García

    (Department of Electrical Engineering, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain)

  • Emilio Gómez-Lázaro

    (Renewable Energy Research Institute and DIEEAC-ETSII-AB, Universidad de Castilla-La Mancha, 02071 Albacete, Spain)

Abstract

The expansion of wind power around the world poses a new challenge that network operators must overcome, namely the integration of this renewable energy source into the grid. Comprehensive analyses involving time-domain simulations must be carried out to plan network operation and ensure power supply. In light of the above, and with the aim of extending the use of the wind turbine models developed by Standard IEC 61400-27-1 and assessing their performance according to national grid code requirements, an IEC Type 3 wind turbine model has been submitted for the first time to Spanish grid code PO 12.3. Indeed, there is a lack of studies submitting generic wind turbine models to national grid code requirements. The model’s behavior is compared with field measurements of an actual Gamesa G52 machine and with its detailed simulation model. The outcomes obtained have been comprehensively analyzed and the results of the validation criteria highlight that several modeling modifications, in the cases of non-compliance, must be implemented in the IEC-developed Type 3 model in order to comply with PO 12.3. Nevertheless, the results also show that when the transformer inrush current is not considered, the reactive power response of the generic Type 3 WT model meets the validation criteria, thus complying with Spanish PO 12.3.

Suggested Citation

  • Raquel Villena-Ruiz & Francisco Jiménez-Buendía & Andrés Honrubia-Escribano & Ángel Molina-García & Emilio Gómez-Lázaro, 2019. "Compliance of a Generic Type 3 WT Model with the Spanish Grid Code," Energies, MDPI, vol. 12(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1631-:d:226949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1631/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiménez, Francisco & Gómez-Lázaro, Emilio & Fuentes, Juan Alvaro & Molina-García, Angel & Vigueras-Rodríguez, Antonio, 2013. "Validation of a DFIG wind turbine model submitted to two-phase voltage dips following the Spanish grid code," Renewable Energy, Elsevier, vol. 57(C), pages 27-34.
    2. Alberto Lorenzo-Bonache & Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Ángel Molina-García & Emilio Gómez-Lázaro, 2017. "Generic Type 3 Wind Turbine Model Based on IEC 61400-27-1: Parameter Analysis and Transient Response under Voltage Dips," Energies, MDPI, vol. 10(9), pages 1-23, September.
    3. Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro & Jens Fortmann, 2016. "Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27," Energies, MDPI, vol. 9(12), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raquel Villena-Ruiz & Alberto Lorenzo-Bonache & Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro, 2019. "Implementation of IEC 61400-27-1 Type 3 Model: Performance Analysis under Different Modeling Approaches," Energies, MDPI, vol. 12(14), pages 1-23, July.
    2. Francisco Jiménez-Buendía & Raquel Villena-Ruiz & Andrés Honrubia-Escribano & Ángel Molina-García & Emilio Gómez-Lázaro, 2019. "Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3," Energies, MDPI, vol. 12(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xiuqiang & Geng, Hua & Mu, Gang, 2021. "Modeling of wind turbine generators for power system stability studies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Raquel Villena-Ruiz & Alberto Lorenzo-Bonache & Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Emilio Gómez-Lázaro, 2019. "Implementation of IEC 61400-27-1 Type 3 Model: Performance Analysis under Different Modeling Approaches," Energies, MDPI, vol. 12(14), pages 1-23, July.
    3. Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Jorge Luis Sosa-Avendaño & Pascal Gartmann & Sebastian Frahm & Jens Fortmann & Poul Ejnar Sørensen & Emilio Gómez-Lázaro, 2019. "Fault-Ride Trough Validation of IEC 61400-27-1 Type 3 and Type 4 Models of Different Wind Turbine Manufacturers," Energies, MDPI, vol. 12(16), pages 1-18, August.
    4. Tania García-Sánchez & Irene Muñoz-Benavente & Emilio Gómez-Lázaro & Ana Fernández-Guillamón, 2020. "Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips," Energies, MDPI, vol. 13(16), pages 1-19, August.
    5. Francisco Jiménez-Buendía & Raquel Villena-Ruiz & Andrés Honrubia-Escribano & Ángel Molina-García & Emilio Gómez-Lázaro, 2019. "Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3," Energies, MDPI, vol. 12(19), pages 1-16, September.
    6. Honrubia-Escribano, A. & Gómez-Lázaro, E. & Fortmann, J. & Sørensen, P. & Martin-Martinez, S., 2018. "Generic dynamic wind turbine models for power system stability analysis: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1939-1952.
    7. Jun Liu & Feihang Zhou & Chencong Zhao & Zhuoran Wang, 2019. "A PI-Type Sliding Mode Controller Design for PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-12, June.
    8. Alberto Lorenzo-Bonache & Andrés Honrubia-Escribano & Francisco Jiménez-Buendía & Ángel Molina-García & Emilio Gómez-Lázaro, 2017. "Generic Type 3 Wind Turbine Model Based on IEC 61400-27-1: Parameter Analysis and Transient Response under Voltage Dips," Energies, MDPI, vol. 10(9), pages 1-23, September.
    9. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    10. Florin Onea & Andrés Ruiz & Eugen Rusu, 2020. "An Evaluation of the Wind Energy Resources along the Spanish Continental Nearshore," Energies, MDPI, vol. 13(15), pages 1-23, August.
    11. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    12. Müfit Altin & Jan Christian Kuhlmann & Kaushik Das & Anca Daniela Hansen, 2018. "Optimization of Synthetic Inertial Response from Wind Power Plants," Energies, MDPI, vol. 11(5), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1631-:d:226949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.