IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i12p1019-d84541.html
   My bibliography  Save this article

Assessment of the Usability and Accuracy of the Simplified One-Diode Models for Photovoltaic Modules

Author

Listed:
  • Vincenzo Franzitta

    (DEIM Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università degli Studi di Palermo, Viale delle Scienze Edificio 9, 90128 Palermo, Italy)

  • Aldo Orioli

    (DEIM Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università degli Studi di Palermo, Viale delle Scienze Edificio 9, 90128 Palermo, Italy)

  • Alessandra Di Gangi

    (DEIM Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università degli Studi di Palermo, Viale delle Scienze Edificio 9, 90128 Palermo, Italy)

Abstract

Models for photovoltaic (PV) cells and panels, based on the diode equivalent circuit, have been widely used because they are effective tools for system design. Many authors have presented simplified one-diode models whose three or four parameters are calculated using the data extracted from the datasheets issued by PV panel manufactures and adopting some simplifying hypotheses and numerical solving techniques. Sometimes it may be difficult to make a choice among so many models. To help researchers and designers working in the area of photovoltaic systems in selecting the model that is fit for purpose, a criterion for rating both the usability and accuracy of simplified one-diode models is proposed in this paper. The paper minutely describes the adopted hypotheses, analytical procedures and operative steps to calculate the parameters of the most famous simplified one-diode equivalent circuits. To test the achievable accuracy of the models, a comparison between the characteristics of some commercial PV modules issued by PV panel manufacturers and the calculated current-voltage ( I-V ) curves, at constant solar irradiance and/or cell temperature, is carried out. The study shows that, even if different usability ratings and accuracies are observed, the simplified one-diode models can be considered very effective tools.

Suggested Citation

  • Vincenzo Franzitta & Aldo Orioli & Alessandra Di Gangi, 2016. "Assessment of the Usability and Accuracy of the Simplified One-Diode Models for Photovoltaic Modules," Energies, MDPI, vol. 9(12), pages 1-41, December.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1019-:d:84541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/12/1019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/12/1019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garrido-Alzar, C.L., 1997. "Algorithm for extraction of solar cell parameters from I–V curve using double exponential model," Renewable Energy, Elsevier, vol. 10(2), pages 125-128.
    2. Aldo Orioli & Alessandra Di Gangi, 2016. "A Criterion for Rating the Usability and Accuracy of the One-Diode Models for Photovoltaic Modules," Energies, MDPI, vol. 9(6), pages 1-48, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja & Giovanni Petrone & Giovanni Spagnuolo, 2018. "A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions," Energies, MDPI, vol. 11(4), pages 1-17, March.
    2. Budimir Sudimac & Aleksandra Ugrinović & Mišo Jurčević, 2020. "The Application of Photovoltaic Systems in Sacred Buildings for the Purpose of Electric Power Production: The Case Study of the Cathedral of St. Michael the Archangel in Belgrade," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    3. Vincenzo Franzitta & Aldo Orioli & Alessandra Di Gangi, 2017. "Assessment of the Usability and Accuracy of Two-Diode Models for Photovoltaic Modules," Energies, MDPI, vol. 10(4), pages 1-32, April.
    4. Liying Huang & Dongyuan Qiu & Fan Xie & Yanfeng Chen & Bo Zhang, 2017. "Modeling and Stability Analysis of a Single-Phase Two-Stage Grid-Connected Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-14, December.
    5. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    2. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    3. Ciulla, Giuseppina & Lo Brano, Valerio & Di Dio, Vincenzo & Cipriani, Giovanni, 2014. "A comparison of different one-diode models for the representation of I–V characteristic of a PV cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 684-696.
    4. Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja & Giovanni Petrone & Giovanni Spagnuolo, 2018. "A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions," Energies, MDPI, vol. 11(4), pages 1-17, March.
    5. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    6. Toledo, F.J. & Blanes, José M. & Garrigós, Ausiàs & Martínez, José A., 2012. "Analytical resolution of the electrical four-parameters model of a photovoltaic module using small perturbation around the operating point," Renewable Energy, Elsevier, vol. 43(C), pages 83-89.
    7. Humada, Ali M. & Aaref, Ashty M. & Hamada, Hussein M. & Sulaiman, Mohd Herwan & Amin, Nowshad & Mekhilef, Saad, 2018. "Modeling and characterization of a grid-connected photovoltaic system under tropical climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2094-2105.
    8. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    9. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Aldo Orioli & Alessandra Di Gangi, 2016. "A Criterion for Rating the Usability and Accuracy of the One-Diode Models for Photovoltaic Modules," Energies, MDPI, vol. 9(6), pages 1-48, June.
    11. Vincenzo Franzitta & Aldo Orioli & Alessandra Di Gangi, 2017. "Assessment of the Usability and Accuracy of Two-Diode Models for Photovoltaic Modules," Energies, MDPI, vol. 10(4), pages 1-32, April.
    12. Orioli, Aldo & Di Gangi, Alessandra, 2013. "A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data," Applied Energy, Elsevier, vol. 102(C), pages 1160-1177.
    13. Orioli, Aldo & Di Gangi, Alessandra, 2019. "A procedure to evaluate the seven parameters of the two-diode model for photovoltaic modules," Renewable Energy, Elsevier, vol. 139(C), pages 582-599.
    14. Cotfas, D.T. & Cotfas, P.A. & Kaplanis, S., 2013. "Methods to determine the dc parameters of solar cells: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 588-596.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1019-:d:84541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.