IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p2094-2105.html
   My bibliography  Save this article

Modeling and characterization of a grid-connected photovoltaic system under tropical climate conditions

Author

Listed:
  • Humada, Ali M.
  • Aaref, Ashty M.
  • Hamada, Hussein M.
  • Sulaiman, Mohd Herwan
  • Amin, Nowshad
  • Mekhilef, Saad

Abstract

In this study, a three parameter photovoltaic (PV) model operates under tropical weather conditions is developed and characterized. The performance of the PV system model is also assessed. Malaysia weather conditions selected in this case study as a test bed. A mathematical PV model of a small-scale PV system is established. The proposed PV model reliance on, both, the simplicity and accuracy, which based on real data. The potential results obtained based on the designed simulation. The average PV performance based on the comparison of the calculated and actual PV performances was 65.8%. The average inverter performance based on the calculated and actual inverter efficiencies was 97.58%. The accuracy of proposed model verified by using different evaluation criteria and compared with various models from the legacy works. This study could serve as a valuable reference for grid-connected PV system installation in Malaysia and other tropical regions to promote PV implementation.

Suggested Citation

  • Humada, Ali M. & Aaref, Ashty M. & Hamada, Hussein M. & Sulaiman, Mohd Herwan & Amin, Nowshad & Mekhilef, Saad, 2018. "Modeling and characterization of a grid-connected photovoltaic system under tropical climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2094-2105.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2094-2105
    DOI: 10.1016/j.rser.2017.08.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117311875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.08.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chokmaviroj, Somchai & Wattanapong, Rakwichian & Suchart, Yammen, 2006. "Performance of a 500kWP grid connected photovoltaic system at Mae Hong Son Province, Thailand," Renewable Energy, Elsevier, vol. 31(1), pages 19-28.
    2. Akkaya, R. & Kulaksiz, A. A., 2004. "A microcontroller-based stand-alone photovoltaic power system for residential appliances," Applied Energy, Elsevier, vol. 78(4), pages 419-431, August.
    3. Solangi, K.H. & Islam, M.R. & Saidur, R. & Rahim, N.A. & Fayaz, H., 2011. "A review on global solar energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2149-2163, May.
    4. Ciulla, Giuseppina & Lo Brano, Valerio & Di Dio, Vincenzo & Cipriani, Giovanni, 2014. "A comparison of different one-diode models for the representation of I–V characteristic of a PV cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 684-696.
    5. Dizqah, Arash M. & Maheri, Alireza & Busawon, Krishna, 2014. "An accurate method for the PV model identification based on a genetic algorithm and the interior-point method," Renewable Energy, Elsevier, vol. 72(C), pages 212-222.
    6. Saber, Esmail M. & Lee, Siew Eang & Manthapuri, Sumanth & Yi, Wang & Deb, Chirag, 2014. "PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings," Energy, Elsevier, vol. 71(C), pages 588-595.
    7. Garrido-Alzar, C.L., 1997. "Algorithm for extraction of solar cell parameters from I–V curve using double exponential model," Renewable Energy, Elsevier, vol. 10(2), pages 125-128.
    8. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    9. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    10. Farhoodnea, Masoud & Mohamed, Azah & Khatib, Tamer & Elmenreich, Wilfried, 2015. "Performance evaluation and characterization of a 3-kWp grid-connected photovoltaic system based on tropical field experimental results: new results and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1047-1054.
    11. Wittkopf, Stephen & Valliappan, Selvam & Liu, Lingyun & Ang, Kian Seng & Cheng, Seng Chye Jonathan, 2012. "Analytical performance monitoring of a 142.5kWp grid-connected rooftop BIPV system in Singapore," Renewable Energy, Elsevier, vol. 47(C), pages 9-20.
    12. Reinders, A. H. M. E. & Pramusito & Sudradjat, A. & van Dijk, V. A. P. & Mulyadi, R. & Turkenburg, W. C., 1999. "Sukatani revisited: on the performance of nine-year-old solar home systems and street lighting systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 3(1), pages 1-47, March.
    13. Amin, Nowshad & Lung, Chin Wen & Sopian, Kamaruzzaman, 2009. "A practical field study of various solar cells on their performance in Malaysia," Renewable Energy, Elsevier, vol. 34(8), pages 1939-1946.
    14. Sopian, Kamaruzzaman & Ibrahim, Mohd Zamri & Wan Daud, Wan Ramli & Othman, Mohd Yusof & Yatim, Baharuddin & Amin, Nowshad, 2009. "Performance of a PV–wind hybrid system for hydrogen production," Renewable Energy, Elsevier, vol. 34(8), pages 1973-1978.
    15. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haitham Esam Rababah & Azhar Ghazali & Mohd Hafizal Mohd Isa, 2021. "Building Integrated Photovoltaic (BIPV) in Southeast Asian Countries: Review of Effects and Challenges," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    2. Bahrami, Milad & Gavagsaz-Ghoachani, Roghayeh & Zandi, Majid & Phattanasak, Matheepot & Maranzanaa, Gaël & Nahid-Mobarakeh, Babak & Pierfederici, Serge & Meibody-Tabar, Farid, 2019. "Hybrid maximum power point tracking algorithm with improved dynamic performance," Renewable Energy, Elsevier, vol. 130(C), pages 982-991.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    2. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    3. Gulkowski, Slawomir & Muñoz Diez, José Vicente & Aguilera Tejero, Jorge & Nofuentes, Gustavo, 2019. "Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions," Energy, Elsevier, vol. 172(C), pages 380-390.
    4. Tuyen Nguyen-Duc & Huy Nguyen-Duc & Thinh Le-Viet & Hirotaka Takano, 2020. "Single-Diode Models of PV Modules: A Comparison of Conventional Approaches and Proposal of a Novel Model," Energies, MDPI, vol. 13(6), pages 1-22, March.
    5. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    6. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    7. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    8. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    9. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.
    11. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    12. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    13. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    14. Li, W. & Paul, M.C. & Baig, H. & Siviter, J. & Montecucco, A. & Mallick, T.K. & Knox, A.R., 2019. "A three-point-based electrical model and its application in a photovoltaic thermal hybrid roof-top system with crossed compound parabolic concentrator," Renewable Energy, Elsevier, vol. 130(C), pages 400-415.
    15. Ciulla, Giuseppina & Lo Brano, Valerio & Di Dio, Vincenzo & Cipriani, Giovanni, 2014. "A comparison of different one-diode models for the representation of I–V characteristic of a PV cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 684-696.
    16. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    17. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    18. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    19. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Liu, Zhongbing & Wu, Zhenghong & He, Xihua, 2017. "Dynamical simulation of building integrated photovoltaic thermoelectric wall system: Balancing calculation speed and accuracy," Applied Energy, Elsevier, vol. 204(C), pages 887-897.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2094-2105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.