IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v28y2013icp588-596.html
   My bibliography  Save this article

Methods to determine the dc parameters of solar cells: A critical review

Author

Listed:
  • Cotfas, D.T.
  • Cotfas, P.A.
  • Kaplanis, S.

Abstract

This review article critically outlines and discusses the main issues of 34 methods which have been developed and validated over the past 35 years in order to determine with an acceptable accuracy and reliability fundamental parameters of solar cells. This review covers methodologies which deal with current–voltage characteristic (I–V) analysis either theoretically through elaborated models and/or treated graphically. Methodologies based on the theoretical analysis of the I–V characteristics using the one or two diode model are discussed. The investigation on the I–V characteristics is processed via statistical functions, non-linear regression and stochastic models. A second family of methods to determine the solar cell electric parameters comprises the ones which deal with the graphical treatment and analysis of the I–V characteristics which are measured at different environmental conditions. To the third family belong the methods which use a mix approach of theoretical analysis of the I–V characteristics through modeling on one hand and the graphical analysis of their experimental configuration, on the other. The paper comments on each of the 34 methods and provides pros and cons for the determination of the fundamental electric parameters of solar cells.

Suggested Citation

  • Cotfas, D.T. & Cotfas, P.A. & Kaplanis, S., 2013. "Methods to determine the dc parameters of solar cells: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 588-596.
  • Handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:588-596
    DOI: 10.1016/j.rser.2013.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113005571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stutenbaeumer, Ulrich & Mesfin, Belayneh, 1999. "Equivalent model of monocrystalline, polycrystalline and amorphous silicon solar cells," Renewable Energy, Elsevier, vol. 18(4), pages 501-512.
    2. Sandrolini, L. & Artioli, M. & Reggiani, U., 2010. "Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis," Applied Energy, Elsevier, vol. 87(2), pages 442-451, February.
    3. Bashahu, M. & Habyarimana, A., 1995. "Review and test of methods for determination of the solar cell series resistance," Renewable Energy, Elsevier, vol. 6(2), pages 129-138.
    4. Kiran, Engin & İnan, Demir, 1999. "Technical note An approximation to solar cell equation for determination of solar cell parameters," Renewable Energy, Elsevier, vol. 17(2), pages 235-241.
    5. Garrido-Alzar, C.L., 1997. "Algorithm for extraction of solar cell parameters from I–V curve using double exponential model," Renewable Energy, Elsevier, vol. 10(2), pages 125-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esteban Velilla & Juan Bernardo Cano & Keony Jimenez & Jaime Valencia & Daniel Ramirez & Franklin Jaramillo, 2018. "Numerical Analysis to Determine Reliable One-Diode Model Parameters for Perovskite Solar Cells," Energies, MDPI, vol. 11(8), pages 1-12, July.
    2. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    3. Tong, Nhan Thanh & Pora, Wanchalerm, 2016. "A parameter extraction technique exploiting intrinsic properties of solar cells," Applied Energy, Elsevier, vol. 176(C), pages 104-115.
    4. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    5. Tihomir Betti & Ante Kristić & Ivan Marasović & Vesna Pekić, 2024. "Accuracy of Simscape Solar Cell Block for Modeling a Partially Shaded Photovoltaic Module," Energies, MDPI, vol. 17(10), pages 1-19, May.
    6. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    7. Jena, Debashisha & Ramana, Vanjari Venkata, 2015. "Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 400-417.
    8. Du, Bolun & Yang, Ruizhen & He, Yunze & Wang, Feng & Huang, Shoudao, 2017. "Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1117-1151.
    9. Rhouma, Mohamed B.H. & Gastli, Adel & Ben Brahim, Lazhar & Touati, Farid & Benammar, Mohieddine, 2017. "A simple method for extracting the parameters of the PV cell single-diode model," Renewable Energy, Elsevier, vol. 113(C), pages 885-894.
    10. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    11. Ramgolam, Yatindra Kumar & Soyjaudah, Krishnaraj Madhavjee Sunjiv, 2017. "Holistic performance appraisal of a photovoltaic system," Renewable Energy, Elsevier, vol. 109(C), pages 440-448.
    12. Pindado, Santiago & Cubas, Javier, 2017. "Simple mathematical approach to solar cell/panel behavior based on datasheet information," Renewable Energy, Elsevier, vol. 103(C), pages 729-738.
    13. Nader Anani & Haider Ibrahim, 2020. "Performance Evaluation of Analytical Methods for Parameters Extraction of Photovoltaic Generators," Energies, MDPI, vol. 13(18), pages 1-25, September.
    14. Almonacid, Florencia & Rodrigo, Pedro & Fernández, Eduardo F., 2016. "Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques," Energy, Elsevier, vol. 101(C), pages 146-160.
    15. Jongwon Lee, 2020. "Limiting Efficiencies of Intermediate Band Solar Cells in Tandem Configuration," Energies, MDPI, vol. 13(22), pages 1-15, November.
    16. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.
    17. Skoko, Sasa M. & Ciric, Rade M., 2017. "Laboratory exercises of photovoltaic systems–Review of the equpment, methodology, trials and results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 293-303.
    18. Cotfas, D.T. & Cotfas, P.A. & Kaplanis, S., 2016. "Methods and techniques to determine the dynamic parameters of solar cells: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 213-221.
    19. Petru Adrian Cotfas & Daniel Tudor Cotfas & Paul Nicolae Borza & Dezso Sera & Remus Teodorescu, 2018. "Solar Cell Capacitance Determination Based on an RLC Resonant Circuit," Energies, MDPI, vol. 11(3), pages 1-13, March.
    20. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    21. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    22. Senturk, A. & Eke, R., 2017. "A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values," Renewable Energy, Elsevier, vol. 103(C), pages 58-69.
    23. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    24. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    2. Rhouma, Mohamed B.H. & Gastli, Adel & Ben Brahim, Lazhar & Touati, Farid & Benammar, Mohieddine, 2017. "A simple method for extracting the parameters of the PV cell single-diode model," Renewable Energy, Elsevier, vol. 113(C), pages 885-894.
    3. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    4. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    5. Ghani, F. & Rosengarten, G. & Duke, M. & Carson, J.K., 2014. "The numerical calculation of single-diode solar-cell modelling parameters," Renewable Energy, Elsevier, vol. 72(C), pages 105-112.
    6. Orioli, Aldo & Di Gangi, Alessandra, 2013. "A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data," Applied Energy, Elsevier, vol. 102(C), pages 1160-1177.
    7. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    8. Aurel Gontean & Septimiu Lica & Szilard Bularka & Roland Szabo & Dan Lascu, 2017. "A Novel High Accuracy PV Cell Model Including Self Heating and Parameter Variation," Energies, MDPI, vol. 11(1), pages 1-21, December.
    9. Habib Kraiem & Ezzeddine Touti & Abdulaziz Alanazi & Ahmed M. Agwa & Tarek I. Alanazi & Mohamed Jamli & Lassaad Sbita, 2023. "Parameters Identification of Photovoltaic Cell and Module Models Using Modified Social Group Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    10. Jiang, Lian Lian & Maskell, Douglas L. & Patra, Jagdish C., 2013. "Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm," Applied Energy, Elsevier, vol. 112(C), pages 185-193.
    11. Wang, Meng & Peng, Jinqing & Luo, Yimo & Shen, Zhicheng & Yang, Hongxing, 2021. "Comparison of different simplistic prediction models for forecasting PV power output: Assessment with experimental measurements," Energy, Elsevier, vol. 224(C).
    12. Chen, Xiang & Ding, Kun & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Jiang, Meng & Gao, Ruiguang & Liu, Zengquan, 2023. "Research on real-time identification method of model parameters for the photovoltaic array," Applied Energy, Elsevier, vol. 342(C).
    13. Piliougine, Michel & Elizondo, David & Mora-López, Llanos & Sidrach-de-Cardona, Mariano, 2013. "Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules," Applied Energy, Elsevier, vol. 112(C), pages 610-617.
    14. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    15. Vincenzo Franzitta & Aldo Orioli & Alessandra Di Gangi, 2016. "Assessment of the Usability and Accuracy of the Simplified One-Diode Models for Photovoltaic Modules," Energies, MDPI, vol. 9(12), pages 1-41, December.
    16. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    17. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    18. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    19. Carrero, C. & Amador, J. & Arnaltes, S., 2007. "A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, Elsevier, vol. 32(15), pages 2579-2589.
    20. Khanna, Vandana & Das, B.K. & Bisht, Dinesh & Vandana, & Singh, P.K., 2015. "A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 105-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:588-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.