IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p828-d80617.html
   My bibliography  Save this article

A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis

Author

Listed:
  • Feng Lu

    (Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
    Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada)

  • Chunyu Jiang

    (Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China)

  • Jinquan Huang

    (Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China)

  • Yafan Wang

    (Aviation Motor Control System Institute, Aviation Industry Corporation of China, Wuxi 214063, Jiangsu, China)

  • Chengxin You

    (Aviation Motor Control System Institute, Aviation Industry Corporation of China, Wuxi 214063, Jiangsu, China)

Abstract

Gas path fault diagnosis involves the effective utilization of condition-based sensor signals along engine gas path to accurately identify engine performance failure. The rapid development of information processing technology has led to the use of multiple-source information fusion for fault diagnostics. Numerous efforts have been paid to develop data-based fusion methods, such as neural networks fusion, while little research has focused on fusion architecture or the fusion of different method kinds. In this paper, a data hierarchical fusion using improved weighted Dempster–Shaffer evidence theory (WDS) is proposed, and the integration of data-based and model-based methods is presented for engine gas-path fault diagnosis. For the purpose of simplifying learning machine typology, a recursive reduced kernel based extreme learning machine (RR-KELM) is developed to produce the fault probability, which is considered as the data-based evidence. Meanwhile, the model-based evidence is achieved using particle filter-fuzzy logic algorithm (PF-FL) by engine health estimation and component fault location in feature level. The outputs of two evidences are integrated using WDS evidence theory in decision level to reach a final recognition decision of gas-path fault pattern. The characteristics and advantages of two evidences are analyzed and used as guidelines for data hierarchical fusion framework. Our goal is that the proposed methodology provides much better performance of gas-path fault diagnosis compared to solely relying on data-based or model-based method. The hierarchical fusion framework is evaluated in terms to fault diagnosis accuracy and robustness through a case study involving fault mode dataset of a turbofan engine that is generated by the general gas turbine simulation. These applications confirm the effectiveness and usefulness of the proposed approach.

Suggested Citation

  • Feng Lu & Chunyu Jiang & Jinquan Huang & Yafan Wang & Chengxin You, 2016. "A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis," Energies, MDPI, vol. 9(10), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:828-:d:80617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng Lu & Jinquan Huang & Yiqiu Lv, 2013. "Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach," Energies, MDPI, vol. 6(1), pages 1-22, January.
    2. Feng Lu & Yafan Wang & Jinquan Huang & Yihuan Huang, 2015. "Gas Turbine Transient Performance Tracking Using Data Fusion Based on an Adaptive Particle Filter," Energies, MDPI, vol. 8(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang Liu & Youyuan Wang & Yi Yang & Ruijin Liao & Yujie Geng & Liwei Zhou, 2017. "A Failure Probability Calculation Method for Power Equipment Based on Multi-Characteristic Parameters," Energies, MDPI, vol. 10(5), pages 1-15, May.
    2. Jie Liu & Qiu Tang & Wei Qiu & Jun Ma & Junfeng Duan, 2021. "Probability-Based Failure Evaluation for Power Measuring Equipment," Energies, MDPI, vol. 14(12), pages 1-16, June.
    3. Valentina Zaccaria & Moksadur Rahman & Ioanna Aslanidou & Konstantinos Kyprianidis, 2019. "A Review of Information Fusion Methods for Gas Turbine Diagnostics," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    4. Hui Wang & Jingxuan Sun & Jianbo Sun & Jilong Wang, 2017. "Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models," Energies, MDPI, vol. 10(10), pages 1-13, October.
    5. Nicola Menga & Akhila Mothakani & Maria Grazia De Giorgi & Radoslaw Przysowa & Antonio Ficarella, 2022. "Extreme Learning Machine-Based Diagnostics for Component Degradation in a Microturbine," Energies, MDPI, vol. 15(19), pages 1-22, October.
    6. Jiao Liu & Jinfu Liu & Daren Yu & Myeongsu Kang & Weizhong Yan & Zhongqi Wang & Michael G. Pecht, 2018. "Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network," Energies, MDPI, vol. 11(8), pages 1-18, August.
    7. Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
    2. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    3. Zijian Qiang & Jinquan Huang & Feng Lu & Xiaodong Chang, 2019. "Robust Sensor Fault Reconstruction via a Bank of Second-Order Sliding Mode Observers for Aircraft Engines," Energies, MDPI, vol. 12(14), pages 1-20, July.
    4. Valentina Zaccaria & Moksadur Rahman & Ioanna Aslanidou & Konstantinos Kyprianidis, 2019. "A Review of Information Fusion Methods for Gas Turbine Diagnostics," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    5. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    6. Feng Lu & Yu Ye & Jinquan Huang, 2017. "Gas Turbine Engine Identification Based on a Bank of Self-Tuning Wiener Models Using Fast Kernel Extreme Learning Machine," Energies, MDPI, vol. 10(9), pages 1-17, September.
    7. Xiaodong Chang & Jinquan Huang & Feng Lu, 2019. "Sensor Fault Tolerant Control for Aircraft Engines Using Sliding Mode Observer," Energies, MDPI, vol. 12(21), pages 1-15, October.
    8. Feng Lu & Yafan Wang & Jinquan Huang & Yihuan Huang, 2015. "Gas Turbine Transient Performance Tracking Using Data Fusion Based on an Adaptive Particle Filter," Energies, MDPI, vol. 8(12), pages 1-17, December.
    9. Xiaodong Chang & Jinquan Huang & Feng Lu & Haobo Sun, 2016. "Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer," Energies, MDPI, vol. 9(8), pages 1-15, July.
    10. Qingcai Yang & Shuying Li & Yunpeng Cao & Fengshou Gu & Ann Smith, 2018. "A Gas Path Fault Contribution Matrix for Marine Gas Turbine Diagnosis Based on a Multiple Model Fault Detection and Isolation Approach," Energies, MDPI, vol. 11(12), pages 1-21, November.
    11. Xu, Maojun & Liu, Jinxin & Li, Ming & Geng, Jia & Wu, Yun & Song, Zhiping, 2022. "Improved hybrid modeling method with input and output self-tuning for gas turbine engine," Energy, Elsevier, vol. 238(PA).
    12. Jakovljević, Ivan & Mijailović, Radomir & Mirosavljević, Petar, 2018. "Carbon dioxide emission during the life cycle of turbofan aircraft," Energy, Elsevier, vol. 148(C), pages 866-875.
    13. Xiaojie Qiu & Xiaodong Chang & Jie Chen & Baiqing Fan, 2022. "Research on the Analytical Redundancy Method for the Control System of Variable Cycle Engine," Sustainability, MDPI, vol. 14(10), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:828-:d:80617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.