A Failure Probability Calculation Method for Power Equipment Based on Multi-Characteristic Parameters
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Junjie Lu & Jinquan Huang & Feng Lu, 2017. "Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle," Energies, MDPI, vol. 10(1), pages 1-15, January.
- Feng Lu & Chunyu Jiang & Jinquan Huang & Yafan Wang & Chengxin You, 2016. "A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis," Energies, MDPI, vol. 9(10), pages 1-22, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jie Liu & Qiu Tang & Wei Qiu & Jun Ma & Junfeng Duan, 2021. "Probability-Based Failure Evaluation for Power Measuring Equipment," Energies, MDPI, vol. 14(12), pages 1-16, June.
- Gaoyang Li & Xiaohua Wang & Aijun Yang & Mingzhe Rong & Kang Yang, 2017. "Failure Prognosis of High Voltage Circuit Breakers with Temporal Latent Dirichlet Allocation," Energies, MDPI, vol. 10(11), pages 1-20, November.
- Jakub Souček & Pavel Trnka & Jaroslav Hornak, 2017. "Proposal of Physical-Statistical Model of Thermal Aging Respecting Threshold Value," Energies, MDPI, vol. 10(8), pages 1-24, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiao Liu & Jinfu Liu & Daren Yu & Myeongsu Kang & Weizhong Yan & Zhongqi Wang & Michael G. Pecht, 2018. "Fault Detection for Gas Turbine Hot Components Based on a Convolutional Neural Network," Energies, MDPI, vol. 11(8), pages 1-18, August.
- Jie Liu & Qiu Tang & Wei Qiu & Jun Ma & Junfeng Duan, 2021. "Probability-Based Failure Evaluation for Power Measuring Equipment," Energies, MDPI, vol. 14(12), pages 1-16, June.
- Ferhat Ucar & Omer F. Alcin & Besir Dandil & Fikret Ata, 2018. "Power Quality Event Detection Using a Fast Extreme Learning Machine," Energies, MDPI, vol. 11(1), pages 1-14, January.
- Hui Wang & Jingxuan Sun & Jianbo Sun & Jilong Wang, 2017. "Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models," Energies, MDPI, vol. 10(10), pages 1-13, October.
- Yanfeng He & Zhijie Guo & Xiang Wang & Waheed Abdul, 2023. "A Hybrid Approach of the Deep Learning Method and Rule-Based Method for Fault Diagnosis of Sucker Rod Pumping Wells," Energies, MDPI, vol. 16(7), pages 1-19, March.
- Valentina Zaccaria & Moksadur Rahman & Ioanna Aslanidou & Konstantinos Kyprianidis, 2019. "A Review of Information Fusion Methods for Gas Turbine Diagnostics," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
- Nicola Menga & Akhila Mothakani & Maria Grazia De Giorgi & Radoslaw Przysowa & Antonio Ficarella, 2022. "Extreme Learning Machine-Based Diagnostics for Component Degradation in a Microturbine," Energies, MDPI, vol. 15(19), pages 1-22, October.
- Xu, Maojun & Liu, Jinxin & Li, Ming & Geng, Jia & Wu, Yun & Song, Zhiping, 2022. "Improved hybrid modeling method with input and output self-tuning for gas turbine engine," Energy, Elsevier, vol. 238(PA).
- Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
More about this item
Keywords
failure probability; multi-characteristic parameters; the Weibull model; differential warning value; association rule; failure modes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:704-:d:98891. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.