IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2831-d250742.html
   My bibliography  Save this article

Robust Sensor Fault Reconstruction via a Bank of Second-Order Sliding Mode Observers for Aircraft Engines

Author

Listed:
  • Zijian Qiang

    (Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Jinquan Huang

    (Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Feng Lu

    (Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Xiaodong Chang

    (Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

This paper deals with sensor faults of aircraft engines under uncertainties using a bank of second-order sliding mode observers (SMOs). In view of the effect of inevitable uncertainties on the fault reconstruction, a method combining H ∞ concepts and linear matrix inequalities (LMIs) is proposed, in which a scaling matrix is designed to minimize the gain of the transfer function matrix from uncertainty to reconstruction. However, robust design generally requires that engine outputs outnumber faults. In the case where the above-mentioned requirement is not satisfied, a bank of sliding mode observers is proposed to ensure the degrees of freedom available in robust design. In specific, each observer corresponds to a certain sensor with the hypothesis that the corresponding sensor will not have faults, to create one degree of design freedom for each observer. After fault occurrence, a large estimation error is expected in the observers with wrong hypothesis, and then a logic module is designed to detect sensor faults and obtain the optimal robust sensor fault reconstruction at the same time. The proposed approach is applied to a nonlinear engine component-level-model (CLM) simulation platform, and a numerical study is performed to validate the effectiveness.

Suggested Citation

  • Zijian Qiang & Jinquan Huang & Feng Lu & Xiaodong Chang, 2019. "Robust Sensor Fault Reconstruction via a Bank of Second-Order Sliding Mode Observers for Aircraft Engines," Energies, MDPI, vol. 12(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2831-:d:250742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2831/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2831/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng Lu & Jinquan Huang & Yiqiu Lv, 2013. "Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach," Energies, MDPI, vol. 6(1), pages 1-22, January.
    2. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Chang & Jinquan Huang & Feng Lu, 2019. "Sensor Fault Tolerant Control for Aircraft Engines Using Sliding Mode Observer," Energies, MDPI, vol. 12(21), pages 1-15, October.
    2. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    3. Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
    4. Feng Lu & Chunyu Jiang & Jinquan Huang & Yafan Wang & Chengxin You, 2016. "A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis," Energies, MDPI, vol. 9(10), pages 1-22, October.
    5. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    6. Zhao, Hang & Liao, Zengbu & Liu, Jinxin & Li, Ming & Liu, Wei & Wang, Lei & Song, Zhiping, 2022. "A highly robust thrust estimation method with dissimilar redundancy framework for gas turbine engine," Energy, Elsevier, vol. 245(C).
    7. Feng Lu & Yafan Wang & Jinquan Huang & Yihuan Huang, 2015. "Gas Turbine Transient Performance Tracking Using Data Fusion Based on an Adaptive Particle Filter," Energies, MDPI, vol. 8(12), pages 1-17, December.
    8. Xiaodong Chang & Jinquan Huang & Feng Lu & Haobo Sun, 2016. "Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer," Energies, MDPI, vol. 9(8), pages 1-15, July.
    9. Qingcai Yang & Shuying Li & Yunpeng Cao & Fengshou Gu & Ann Smith, 2018. "A Gas Path Fault Contribution Matrix for Marine Gas Turbine Diagnosis Based on a Multiple Model Fault Detection and Isolation Approach," Energies, MDPI, vol. 11(12), pages 1-21, November.
    10. Jakovljević, Ivan & Mijailović, Radomir & Mirosavljević, Petar, 2018. "Carbon dioxide emission during the life cycle of turbofan aircraft," Energy, Elsevier, vol. 148(C), pages 866-875.
    11. Xiaojie Qiu & Xiaodong Chang & Jie Chen & Baiqing Fan, 2022. "Research on the Analytical Redundancy Method for the Control System of Variable Cycle Engine," Sustainability, MDPI, vol. 14(10), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2831-:d:250742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.