IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1363-d111296.html
   My bibliography  Save this article

Gas Turbine Engine Identification Based on a Bank of Self-Tuning Wiener Models Using Fast Kernel Extreme Learning Machine

Author

Listed:
  • Feng Lu

    (Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China)

  • Yu Ye

    (Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China)

  • Jinquan Huang

    (Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China)

Abstract

In order to simultaneously obtain global optimal model structure and coefficients, this paper proposes a novel Wiener model to identify the dynamic and static behavior of a gas turbine engine. An improved kernel extreme learning machine is presented to build up a bank of self-tuning block-oriented Wiener models; the time constant values of linear dynamic element in Wiener model are designed to tune engine operating conditions. Reduced-dimension matrix inversion incorporated with the fast leave one out cross validation strategy is utilized to decrease computational time for the selection of engine model feature parameters. An optimization algorithm is no longer needed compared to the former method. The contribution of this study is that a more convenient and appropriate methodology is developed to describe aircraft engine thermodynamic behavior during its static and dynamic operations. The methodology is evaluated in terms of computational efforts, dynamic and static estimation accuracy through a case study involving data that are generated by general aircraft engine simulation. The results confirm our viewpoints in this paper.

Suggested Citation

  • Feng Lu & Yu Ye & Jinquan Huang, 2017. "Gas Turbine Engine Identification Based on a Bank of Self-Tuning Wiener Models Using Fast Kernel Extreme Learning Machine," Energies, MDPI, vol. 10(9), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1363-:d:111296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng Lu & Yafan Wang & Jinquan Huang & Yihuan Huang, 2015. "Gas Turbine Transient Performance Tracking Using Data Fusion Based on an Adaptive Particle Filter," Energies, MDPI, vol. 8(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Zhang & Jianping Yuan & Jianfei Pan & Xiaoyu Wu & Jianjun Luo & Li Qiu, 2017. "Controllability and Leader-Based Feedback for Tracking the Synchronization of a Linear-Switched Reluctance Machine Network," Energies, MDPI, vol. 10(11), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
    2. Feng Lu & Chunyu Jiang & Jinquan Huang & Yafan Wang & Chengxin You, 2016. "A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis," Energies, MDPI, vol. 9(10), pages 1-22, October.
    3. Valentina Zaccaria & Moksadur Rahman & Ioanna Aslanidou & Konstantinos Kyprianidis, 2019. "A Review of Information Fusion Methods for Gas Turbine Diagnostics," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    4. Xu, Maojun & Liu, Jinxin & Li, Ming & Geng, Jia & Wu, Yun & Song, Zhiping, 2022. "Improved hybrid modeling method with input and output self-tuning for gas turbine engine," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1363-:d:111296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.