IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v146y2015icp344-352.html
   My bibliography  Save this article

Potential of demand side integration to maximize use of renewable energy sources in Germany

Author

Listed:
  • Stötzer, Martin
  • Hauer, Ines
  • Richter, Marc
  • Styczynski, Zbigniew A.

Abstract

The use of Demand Side Integration (DSI) makes it possible to control electricity consumption and, at the same time, allows for different ancillary system (e.g. voltage and frequency control) or market services (e.g. load shifting) to be provided. In light of today’s power system, which is faced with a high penetration of renewable energy (more than 20%), DSI has become even more important. These new power systems make it especially necessary to shift plenty of demand to times of high feed-in from wind and solar power plants in order to avoid wasting green energy. Additionally providing ancillary services using DSI can help balancing the system. This paper is focused on the analysis of load shifting potential in the residential and commercial sectors. Therefore a scenario based procedure was developed and applied. It uses a genetic algorithm to consider the time-dependent behavior of the different loads, which are modeled as load blocks. The investigation was conducted in the scope of a VDE/ETG working group in close cooperation with industrial partners. The results determined a practical shifting potential for the investigated sectors (residential and commercial) in Germany which could reach 8GW in 2030.

Suggested Citation

  • Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
  • Handle: RePEc:eee:appene:v:146:y:2015:i:c:p:344-352
    DOI: 10.1016/j.apenergy.2015.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915001889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Deok Ki & Park, Sang Yong & Park, Soo Uk, 2007. "Development of assessment model for demand-side management investment programs in Korea," Energy Policy, Elsevier, vol. 35(11), pages 5585-5590, November.
    2. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    3. Stadler, Ingo, 2008. "Power grid balancing of energy systems with high renewable energy penetration by demand response," Utilities Policy, Elsevier, vol. 16(2), pages 90-98, June.
    4. Zakariazadeh, Alireza & Homaee, Omid & Jadid, Shahram & Siano, Pierluigi, 2014. "A new approach for real time voltage control using demand response in an automated distribution system," Applied Energy, Elsevier, vol. 117(C), pages 157-166.
    5. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    6. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    7. Moghaddam, M. Parsa & Abdollahi, A. & Rashidinejad, M., 2011. "Flexible demand response programs modeling in competitive electricity markets," Applied Energy, Elsevier, vol. 88(9), pages 3257-3269.
    8. Zhao, Jiayun & Kucuksari, Sadik & Mazhari, Esfandyar & Son, Young-Jun, 2013. "Integrated analysis of high-penetration PV and PHEV with energy storage and demand response," Applied Energy, Elsevier, vol. 112(C), pages 35-51.
    9. Giannoulis, E.D. & Haralambopoulos, D.A., 2011. "Distributed Generation in an isolated grid: Methodology of case study for Lesvos - Greece," Applied Energy, Elsevier, vol. 88(7), pages 2530-2540, July.
    10. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    11. van Staden, Adam Jacobus & Zhang, Jiangfeng & Xia, Xiaohua, 2011. "A model predictive control strategy for load shifting in a water pumping scheme with maximum demand charges," Applied Energy, Elsevier, vol. 88(12), pages 4785-4794.
    12. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2013. "Hierarchical market integration of responsive loads as spinning reserve," Applied Energy, Elsevier, vol. 104(C), pages 229-238.
    13. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    14. Middelberg, Arno & Zhang, Jiangfeng & Xia, Xiaohua, 2009. "An optimal control model for load shifting - With application in the energy management of a colliery," Applied Energy, Elsevier, vol. 86(7-8), pages 1266-1273, July.
    15. Papagiannis, G. & Dagoumas, A. & Lettas, N. & Dokopoulos, P., 2008. "Economic and environmental impacts from the implementation of an intelligent demand side management system at the European level," Energy Policy, Elsevier, vol. 36(1), pages 163-180, January.
    16. Ashok, S. & Banerjee, R., 2000. "Load-management applications for the industrial sector," Applied Energy, Elsevier, vol. 66(2), pages 105-111, June.
    17. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    18. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "The role of demand-side management in the grid integration of wind power," Applied Energy, Elsevier, vol. 87(8), pages 2581-2588, August.
    19. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    2. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    3. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    4. Finn, P. & O’Connell, M. & Fitzpatrick, C., 2013. "Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction," Applied Energy, Elsevier, vol. 101(C), pages 678-685.
    5. Summerbell, Daniel L. & Khripko, Diana & Barlow, Claire & Hesselbach, Jens, 2017. "Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant," Applied Energy, Elsevier, vol. 197(C), pages 100-113.
    6. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    7. Rajeev, T. & Ashok, S., 2015. "Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources," Applied Energy, Elsevier, vol. 146(C), pages 141-149.
    8. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    9. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    10. Li, Xin & Chen, Hsing Hung & Tao, Xiangnan, 2016. "Pricing and capacity allocation in renewable energy," Applied Energy, Elsevier, vol. 179(C), pages 1097-1105.
    11. Horowitz, Shira & Mauch, Brandon & Sowell, Fallaw, 2014. "Forecasting residential air conditioning loads," Applied Energy, Elsevier, vol. 132(C), pages 47-55.
    12. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    13. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    14. Di Giorgio, Alessandro & Pimpinella, Laura, 2012. "An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management," Applied Energy, Elsevier, vol. 96(C), pages 92-103.
    15. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
    16. Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.
    17. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    18. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    19. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    20. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:146:y:2015:i:c:p:344-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.