IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p8391-8405d53907.html
   My bibliography  Save this article

Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC

Author

Listed:
  • Haifeng Liang
  • Xiaoling Zhao
  • Xiaolei Yu
  • Yajing Gao
  • Jin Yang

Abstract

In recent years, distributed generation and a large number of sensitive AC and DC loads have been connected to distribution networks, which introduce a series of challenges to distribution network operators (DNOs). In addition, the advantages of DC distribution networks, such as the energy conservation and emission reduction, mean that the voltage source converter based multi-terminal direct current (VSC-MTDC) for AC/DC distribution systems demonstrates a great potential, hence drawing growing research interest. In this paper, considering losses of the reactor, the filter and the converter, a mathematical model of VSC-HVDC for the load flow analysis is derived. An AC/DC distribution network architecture has been built, based on which the differences in modified equations of the VSC-MTDC-based network under different control modes are analyzed. In addition, corresponding interface functions under five control modes are provided, and a back/forward iterative algorithm which is applied to power flow calculation of the AC/DC distribution system including VSC-MTDC is proposed. Finally, by calculating the power flow of the modified IEEE14 AC/DC distribution network, the efficiency and validity of the model and algorithm are evaluated. With various distributed generations connected to the network at appropriate locations, power flow results show that network losses and utilization of transmission networks are effectively reduced.

Suggested Citation

  • Haifeng Liang & Xiaoling Zhao & Xiaolei Yu & Yajing Gao & Jin Yang, 2015. "Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC," Energies, MDPI, vol. 8(8), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8391-8405:d:53907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/8391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/8391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Van Hertem, Dirk & Ghandhari, Mehrdad, 2010. "Multi-terminal VSC HVDC for the European supergrid: Obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3156-3163, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Xiao & Yan Li & Huangqing Xiao & Zheren Zhang & Zheng Xu, 2018. "Electromechanical Transient Modeling of Line Commutated Converter-Modular Multilevel Converter-Based Hybrid Multi-Terminal High Voltage Direct Current Transmission Systems," Energies, MDPI, vol. 11(8), pages 1-18, August.
    2. Yongchun Yang & Xiaodan Wang & Jingjing Luo & Jie Duan & Yajing Gao & Hong Li & Xiangning Xiao, 2017. "Multi-Objective Coordinated Planning of Distributed Generation and AC/DC Hybrid Distribution Networks Based on a Multi-Scenario Technique Considering Timing Characteristics," Energies, MDPI, vol. 10(12), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Shafiul Alam & Mohammad Ali Yousef Abido, 2017. "Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters," Energies, MDPI, vol. 10(11), pages 1-19, November.
    2. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    3. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    4. Sajadi, A. & Strezoski, L. & Clark, K. & Prica, M. & Loparo, K.A., 2018. "Transmission system protection screening for integration of offshore wind power plants," Renewable Energy, Elsevier, vol. 125(C), pages 225-233.
    5. Pei, Wei & Chen, Yanning & Sheng, Kun & Deng, Wei & Du, Yan & Qi, Zhiping & Kong, Li, 2015. "Temporal-spatial analysis and improvement measures of Chinese power system for wind power curtailment problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 148-168.
    6. Haipeng Xie & Zhaohong Bie & Yanling Lin & Chao Zheng, 2017. "A Hybrid Reliability Evaluation Method for Meshed VSC-HVDC Grids," Energies, MDPI, vol. 10(7), pages 1-17, July.
    7. Arcia-Garibaldi, Guadalupe & Cruz-Romero, Pedro & Gómez-Expósito, Antonio, 2018. "Future power transmission: Visions, technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 285-301.
    8. Mohamed Radwan & Sahar Pirooz Azad, 2022. "Protection of Multi-Terminal HVDC Grids: A Comprehensive Review," Energies, MDPI, vol. 15(24), pages 1-37, December.
    9. Rouzbehi, Kumars & Candela, J. Ignacio & Gharehpetian, Gevork B. & Harnefors, Lennart & Luna, Alvaro & Rodriguez, Pedro, 2017. "Multiterminal DC grids: Operating analogies to AC power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 886-895.
    10. Ardelean, Mircea & Minnebo, Philip, 2023. "The suitability of seas and shores for building submarine power interconnections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    11. Ke Guo & Qiang Liu & Xinze Xi & Mingxuan Mao & Yihao Wan & Hao Wu, 2020. "Coordinated Control Strategy of a Combined Converter in a Photovoltaic DC Boost Collection System under Partial Shading Conditions," Energies, MDPI, vol. 13(2), pages 1-18, January.
    12. Torriti, Jacopo, 2012. "Demand Side Management for the European Supergrid: Occupancy variances of European single-person households," Energy Policy, Elsevier, vol. 44(C), pages 199-206.
    13. De Prada Gil, Mikel & Domínguez-García, J.L. & Díaz-González, F. & Aragüés-Peñalba, M. & Gomis-Bellmunt, Oriol, 2015. "Feasibility analysis of offshore wind power plants with DC collection grid," Renewable Energy, Elsevier, vol. 78(C), pages 467-477.
    14. Domínguez-García, José Luis & Rogers, Daniel J. & Ugalde-Loo, Carlos E. & Liang, Jun & Gomis-Bellmunt, Oriol, 2012. "Effect of non-standard operating frequencies on the economic cost of offshore AC networks," Renewable Energy, Elsevier, vol. 44(C), pages 267-280.
    15. Javier Renedo & Aurelio García-Cerrada & Luis Rouco & Lukas Sigrist, 2019. "Coordinated Control in VSC-HVDC Multi-Terminal Systems to Improve Transient Stability: The Impact of Communication Latency," Energies, MDPI, vol. 12(19), pages 1-32, September.
    16. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    17. Torriti, Jacopo, 2014. "Privatisation and cross-border electricity trade: From internal market to European Supergrid?," Energy, Elsevier, vol. 77(C), pages 635-640.
    18. Rinne, Sonja, 2018. "Radioinactive: Are nuclear power plant outages in France contagious to the German electricity price?," CIW Discussion Papers 3/2018, University of Münster, Center for Interdisciplinary Economics (CIW).
    19. Pickard, William F., 2013. "The limits of HVDC transmission," Energy Policy, Elsevier, vol. 61(C), pages 292-300.
    20. Raheel Muzzammel & Ali Raza, 2020. "A Support Vector Machine Learning-Based Protection Technique for MT-HVDC Systems," Energies, MDPI, vol. 13(24), pages 1-33, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8391-8405:d:53907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.