IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2102-d163440.html
   My bibliography  Save this article

Electromechanical Transient Modeling of Line Commutated Converter-Modular Multilevel Converter-Based Hybrid Multi-Terminal High Voltage Direct Current Transmission Systems

Author

Listed:
  • Liang Xiao

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Yan Li

    (State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210000, China)

  • Huangqing Xiao

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zheren Zhang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zheng Xu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

A method for electromechanical modeling of line commutated converter (LCC)-modular multilevel converter (MMC)-based hybrid multi-terminal High Voltage Direct Current Transmission (HVDC) systems for large-scale power system transient stability study is proposed. Firstly, the general idea of modeling the LCC-MMC hybrid multi-terminal HVDC system is presented, then the AC-side and DC-side models of the LCC/MMC are established. Different from the conventional first-order DC-side model of the MMC, an improved second-order DC-side model of the MMC is established. Besides considering the firing angle limit of the LCC, a sequential power flow algorithm is proposed for the initialization of LCC-MMC hybrid multi-terminal HVDC system. Lastly, simulations of small scale and large scale power systems embedded with a three-terminal LCC-MMC hybrid HVDC system are performed on the electromechanical simulation platform PSS/E. It is demonstrated that if the firing angle limit is not considered, the accuracy of the power flow solutions will be greatly affected. Steady state calculation and dynamic simulation show that the developed LCC-MMC hybrid MTDC model is accurate enough for electromechanical transient stability studies of large-scale AC/DC system.

Suggested Citation

  • Liang Xiao & Yan Li & Huangqing Xiao & Zheren Zhang & Zheng Xu, 2018. "Electromechanical Transient Modeling of Line Commutated Converter-Modular Multilevel Converter-Based Hybrid Multi-Terminal High Voltage Direct Current Transmission Systems," Energies, MDPI, vol. 11(8), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2102-:d:163440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haifeng Liang & Xiaoling Zhao & Xiaolei Yu & Yajing Gao & Jin Yang, 2015. "Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC," Energies, MDPI, vol. 8(8), pages 1-15, August.
    2. Muhammad Omer Khan & Saeed Zaman Jamali, & Chul-Ho Noh & Gi-Hyeon Gwon & Chul-Hwan Kim, 2018. "A Load Flow Analysis for AC/DC Hybrid Distribution Network Incorporated with Distributed Energy Resources for Different Grid Scenarios," Energies, MDPI, vol. 11(2), pages 1-15, February.
    3. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Cheng & Lijun Xie & Zhibing Wang, 2020. "Research on Serial VSC-LCC Hybrid HVdc Control Strategy and Filter Design Scheme," Energies, MDPI, vol. 13(9), pages 1-16, May.
    2. Jin Zhu & Tongzhen Wei & Qunhai Huo & Jingyuan Yin, 2018. "A Full-bridge Director Switches based Multilevel Converter with DC Fault Blocking Capability and Its Predictive Control Strategy," Energies, MDPI, vol. 12(1), pages 1-22, December.
    3. Naushath M. Haleem & Athula D. Rajapakse & Aniruddha M. Gole & Ioni T. Fernando, 2020. "A Selective Fault Clearing Scheme for a Hybrid VSC-LCC Multi-Terminal HVdc System," Energies, MDPI, vol. 13(14), pages 1-21, July.
    4. Guoteng Wang & Huangqing Xiao & Liang Xiao & Zheren Zhang & Zheng Xu, 2019. "Electromechanical Transient Modeling and Control Strategy of Decentralized Hybrid HVDC Systems," Energies, MDPI, vol. 12(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    2. Sahebkar Farkhani, Jalal & Çelik, Özgür & Ma, Kaiqi & Bak, Claus Leth & Chen, Zhe, 2024. "A comprehensive review of potential protection methods for VSC multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Nansheng Pang & Wenjing Guo, 2019. "Uncertain Hybrid Multiple Attribute Group Decision of Offshore Wind Power Transmission Mode Based on theVIKOR Method," Sustainability, MDPI, vol. 11(21), pages 1-21, November.
    4. Ardelean, Mircea & Minnebo, Philip, 2023. "The suitability of seas and shores for building submarine power interconnections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Charanwanitwong, Thanaphon & Fraszczyk, Anna, 2018. "Rail liberalisation in Europe and lessons for Thailand: Policy makers vs. academic views," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 421-440.
    6. Jiyang Wu & Qiang Li & Qian Chen & Guangqiang Peng & Jinyu Wang & Qiang Fu & Bo Yang, 2022. "Evaluation, Analysis and Diagnosis for HVDC Transmission System Faults via Knowledge Graph under New Energy Systems Construction: A Critical Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    7. Saeed Zaman Jamali & Syed Basit Ali Bukhari & Muhammad Omer Khan & Muhammad Mehdi & Chul-Ho Noh & Gi-Hyeon Gwon & Chul-Hwan Kim, 2018. "Protection Scheme of a Last Mile Active LVDC Distribution Network with Reclosing Option," Energies, MDPI, vol. 11(5), pages 1-20, April.
    8. Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
    9. Li, Bei & Li, Jiangchen, 2021. "Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters," Applied Energy, Elsevier, vol. 304(C).
    10. Belqasem Aljafari & Subramanian Vasantharaj & Vairavasundaram Indragandhi & Rhanganath Vaibhav, 2022. "Optimization of DC, AC, and Hybrid AC/DC Microgrid-Based IoT Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-30, September.
    11. Itiki, Rodney & Manjrekar, Madhav & Di Santo, Silvio Giuseppe & Machado, Luis Fernando M., 2020. "Technical feasibility of Japan-Taiwan-Philippines HVdc interconnector to the Asia Pacific Super Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Itiki, Rodney & Manjrekar, Madhav & Di Santo, Silvio Giuseppe & Itiki, Cinthia, 2023. "Method for spatiotemporal wind power generation profile under hurricanes: U.S.-Caribbean super grid proposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    14. Zarazua de Rubens, Gerardo & Noel, Lance, 2019. "The non-technical barriers to large scale electricity networks: Analysing the case for the US and EU supergrids," Energy Policy, Elsevier, vol. 135(C).
    15. Ye, Yida & Qiao, Ying & Lu, Zongxiang, 2019. "Revolution of frequency regulation in the converter-dominated power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 145-156.
    16. Crozier, Constance & Baker, Kyri, 2022. "The effect of renewable electricity generation on the value of cross-border interconnection," Applied Energy, Elsevier, vol. 324(C).
    17. Soraya Caro Vargas, editor, 2020. "Economic Corridors in Asia: Paradigm of Integration? A Reflection for Latin America," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 139, April.
    18. Tarek Abedin & M. Shahadat Hossain Lipu & Mahammad A. Hannan & Pin Jern Ker & Safwan A. Rahman & Chong Tak Yaw & Sieh K. Tiong & Kashem M. Muttaqi, 2021. "Dynamic Modeling of HVDC for Power System Stability Assessment: A Review, Issues, and Recommendations," Energies, MDPI, vol. 14(16), pages 1-25, August.
    19. Hyuk-Il Kwon & Yun-Sung Cho & Sang-Min Choi, 2020. "A Study on Optimal Power System Reinforcement Measures Following Renewable Energy Expansion," Energies, MDPI, vol. 13(22), pages 1-34, November.
    20. Scholten, Daniel & Bazilian, Morgan & Overland, Indra & Westphal, Kirsten, 2020. "The geopolitics of renewables: New board, new game," Energy Policy, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2102-:d:163440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.