IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i10p12242-12265d57837.html
   My bibliography  Save this article

Electricity Customer Clustering Following Experts’ Principle for Demand Response Applications

Author

Listed:
  • Jimyung Kang

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
    Korea Electrotechnology Research Institute, 111 Hanggaul-ro, Sangnok-gu, Ansan 15588, Korea)

  • Jee-Hyong Lee

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea)

Abstract

The clustering of electricity customers might have an effective meaning if, and only if, it is verified by domain experts. Most of the previous studies on customer clustering, however, do not consider real applications, but only the structure of clusters. Therefore, there is no guarantee that the clustering results are applicable to real domains. In other words, the results might not coincide with those of domain experts. In this paper, we focus on formulating clusters that are applicable to real applications based on domain expert knowledge. More specifically, we try to define a distance between customers that generates clusters that are applicable to demand response applications. First, the k- sliding distance, which is a new distance between two electricity customers, is proposed for customer clustering. The effect of k- sliding distance is verified by expert knowledge. Second, a genetic programming framework is proposed to automatically determine a more improved distance measure. The distance measure generated by our framework can be considered as a reflection of the clustering principles of domain experts. The results of the genetic programming demonstrate the possibility of deriving clustering principles.

Suggested Citation

  • Jimyung Kang & Jee-Hyong Lee, 2015. "Electricity Customer Clustering Following Experts’ Principle for Demand Response Applications," Energies, MDPI, vol. 8(10), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:12242-12265:d:57837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/10/12242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/10/12242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Räsänen, Teemu & Voukantsis, Dimitrios & Niska, Harri & Karatzas, Kostas & Kolehmainen, Mikko, 2010. "Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data," Applied Energy, Elsevier, vol. 87(11), pages 3538-3545, November.
    2. Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio Sánchez-Esguevillas, 2012. "Classification and Clustering of Electricity Demand Patterns in Industrial Parks," Energies, MDPI, vol. 5(12), pages 1-14, December.
    3. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    4. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Tureczek & Per Sieverts Nielsen & Henrik Madsen, 2018. "Electricity Consumption Clustering Using Smart Meter Data," Energies, MDPI, vol. 11(4), pages 1-18, April.
    2. Alexander Martin Tureczek & Per Sieverts Nielsen, 2017. "Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data," Energies, MDPI, vol. 10(5), pages 1-19, April.
    3. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements," Energies, MDPI, vol. 14(4), pages 1-14, February.
    4. Robbert Claeys & Hakim Azaioud & Rémy Cleenwerck & Jos Knockaert & Jan Desmet, 2020. "A Novel Feature Set for Low-Voltage Consumers, Based on the Temporal Dependence of Consumption and Peak Demands," Energies, MDPI, vol. 14(1), pages 1-24, December.
    5. Michał Jasiński & Tomasz Sikorski & Dominika Kaczorowska & Jacek Rezmer & Vishnu Suresh & Zbigniew Leonowicz & Paweł Kostyła & Jarosław Szymańda & Przemysław Janik & Jacek Bieńkowski & Przemysław Prus, 2021. "A Case Study on a Hierarchical Clustering Application in a Virtual Power Plant: Detection of Specific Working Conditions from Power Quality Data," Energies, MDPI, vol. 14(4), pages 1-13, February.
    6. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
    7. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    8. Jimyung Kang & Jee-Hyong Lee, 2017. "Data-Driven Optimization of Incentive-based Demand Response System with Uncertain Responses of Customers," Energies, MDPI, vol. 10(10), pages 1-17, October.
    9. Nakyoung Kim & Sangdon Park & Joohyung Lee & Jun Kyun Choi, 2018. "Load Profile Extraction by Mean-Shift Clustering with Sample Pearson Correlation Coefficient Distance," Energies, MDPI, vol. 11(9), pages 1-20, September.
    10. Yang, Ting & Ren, Minglun & Zhou, Kaile, 2018. "Identifying household electricity consumption patterns: A case study of Kunshan, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 861-868.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    2. Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
    3. Motlagh, Omid & Berry, Adam & O'Neil, Lachlan, 2019. "Clustering of residential electricity customers using load time series," Applied Energy, Elsevier, vol. 237(C), pages 11-24.
    4. Zhou, Kaile & Yang, Changhui & Shen, Jianxin, 2017. "Discovering residential electricity consumption patterns through smart-meter data mining: A case study from China," Utilities Policy, Elsevier, vol. 44(C), pages 73-84.
    5. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    6. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    7. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    8. Jieyi Kang & David Reiner, 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Working Papers EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    10. Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
    11. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang & Fang, Xi, 2021. "A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems," Applied Energy, Elsevier, vol. 282(PB).
    12. Fu, Xin & Zeng, Xiao-Jun & Feng, Pengpeng & Cai, Xiuwen, 2018. "Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China," Energy, Elsevier, vol. 165(PB), pages 76-89.
    13. Miller, Clayton & Nagy, Zoltán & Schlueter, Arno, 2018. "A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1365-1377.
    14. van Zoest, Vera & El Gohary, Fouad & Ngai, Edith C.H. & Bartusch, Cajsa, 2021. "Demand charges and user flexibility – Exploring differences in electricity consumer types and load patterns within the Swedish commercial sector," Applied Energy, Elsevier, vol. 302(C).
    15. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    16. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2018. "Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach," Applied Energy, Elsevier, vol. 230(C), pages 1157-1171.
    17. Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
    18. Yang, Ting & Ren, Minglun & Zhou, Kaile, 2018. "Identifying household electricity consumption patterns: A case study of Kunshan, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 861-868.
    19. Simona-Vasilica Oprea & Adela Bâra & Dan Preoțescu, 2019. "NoSQL Data Storage and Clustering Large Volume of Data from Smart Metering Systems with Impact on Electricity Consumption Peak and Tariff Settings," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 327-333, December.
    20. Wang, Yanmin & Li, Zhiwei & Liu, Junjie & Lu, Xuan & Zhao, Laifu & Zhao, Yan & Feng, Yongtao, 2024. "Analyzing daily change patterns of indoor temperature in district heating systems: A clustering and regression approach," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:12242-12265:d:57837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.