IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3637-d523834.html
   My bibliography  Save this article

Assessing the Impact of Greenhouse Gas Emissions on Economic Profitability of Arable, Forestry, and Silvoarable Systems

Author

Listed:
  • Kristina J. Kaske

    (School of Water Energy and Environment, Cranfield University, Cranfield, Bedford MK43 0AL, UK)

  • Silvestre García de Jalón

    (Department of Agricultural Economics, Statistics and Business Management, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Adrian G. Williams

    (School of Water Energy and Environment, Cranfield University, Cranfield, Bedford MK43 0AL, UK)

  • Anil R. Graves

    (School of Water Energy and Environment, Cranfield University, Cranfield, Bedford MK43 0AL, UK)

Abstract

This study assesses the greenhouse gas (GHG) emissions and sequestration of a silvoarable system with poplar trees and a crop rotation of wheat, barley, and oilseed rape and compares this with a rotation of the same arable crops and a poplar plantation. The Farm-SAFE model, a financial model of arable, forestry, and silvoarable systems, was modified to account for life-cycle greenhouse gas emissions. Greenhouse gas emissions from tree and crop management were determined from life-cycle inventories and carbon storage benefits from the Yield-SAFE model, which predicts crop and tree yields in arable, forestry, and silvoarable systems. An experimental site in Silsoe in southern England served as a case study. The results showed that the arable system was the most financially profitable system, followed by the silvoarable and then the forestry systems, with equivalent annual values of EUR 560, 450 and 140 ha −1 , respectively. When the positive and negative externalities of GHG sequestration and emissions were converted into carbon equivalents and given an economic value, the profitability of the arable systems was altered relative to the forestry and silvoarable systems, although in the analysis, the exact impact depended on the value given to GHG emissions. Market values for carbon resulted in the arable system remaining the most profitable system, albeit at a reduced level. Time series values for carbon proposed by the UK government resulted in forestry being the most profitable system. Hence, the relative benefit of the three systems was highly sensitive to the value that carbon was given in the analysis. This in turn is dependent on the perspective that is given to the analysis.

Suggested Citation

  • Kristina J. Kaske & Silvestre García de Jalón & Adrian G. Williams & Anil R. Graves, 2021. "Assessing the Impact of Greenhouse Gas Emissions on Economic Profitability of Arable, Forestry, and Silvoarable Systems," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3637-:d:523834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    2. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    3. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    4. Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
    5. Kay, Sonja & Rega, Carlo & Moreno, Gerardo & den Herder, Michael & Palma, João H.N. & Borek, Robert & Crous-Duran, Josep & Freese, Dirk & Giannitsopoulos, Michail & Graves, Anil & Jäger, Mareike & Lam, 2019. "Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe," Land Use Policy, Elsevier, vol. 83(C), pages 581-593.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiesmeier, Alma & Zander, Peter, 2023. "Can agroforestry compete? A scoping review of the economic performance of agroforestry practices in Europe and North America," Forest Policy and Economics, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rótolo, G.C. & Montico, S. & Francis, C.A. & Ulgiati, S., 2015. "How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis," Agricultural Systems, Elsevier, vol. 141(C), pages 79-93.
    2. Michal Kulak & Thomas Nemecek & Emmanuel Frossard & Gérard Gaillard, 2013. "How Eco-Efficient Are Low-Input Cropping Systems in Western Europe, and What Can Be Done to Improve Their Eco-Efficiency?," Sustainability, MDPI, vol. 5(9), pages 1-22, September.
    3. Prechsl, Ulrich E. & Wittwer, Raphael & van der Heijden, Marcel G.A. & Lüscher, Gisela & Jeanneret, Philippe & Nemecek, Thomas, 2017. "Assessing the environmental impacts of cropping systems and cover crops: Life cycle assessment of FAST, a long-term arable farming field experiment," Agricultural Systems, Elsevier, vol. 157(C), pages 39-50.
    4. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    5. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    6. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    7. Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
    8. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    9. Pradeleix, L. & Roux, P. & Bouarfa, S. & Bellon-Maurel, V., 2023. "Multilevel life cycle assessment to evaluate prospective agricultural development scenarios in a semi-arid irrigated region of Tunisia," Agricultural Systems, Elsevier, vol. 212(C).
    10. Pradeleix, L. & Roux, P. & Bouarfa, S. & Bellon-Maurel, V., 2022. "Multilevel environmental assessment of regional farming activities with Life Cycle Assessment: Tackling data scarcity and farm diversity with Life Cycle Inventories based on Agrarian System Diagnosis," Agricultural Systems, Elsevier, vol. 196(C).
    11. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    12. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.
    13. Berti, Marisol & Johnson, Burton & Ripplinger, David & Gesch, Russ & Aponte, Alfredo, 2017. "Environmental impact assessment of double- and relay-cropping with winter camelina in the northern Great Plains, USA," Agricultural Systems, Elsevier, vol. 156(C), pages 1-12.
    14. Liu, Chia-Yi & Hsieh & Chen-Yu, 2023. "How does Organic Agriculture Contribute to Sustainable Development? Organic Agriculture in Taiwan," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 14(03), September.
    15. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, vol. 140(C), pages 19-25.
    16. Chen, Xuqi & Gao, Zhifeng & Swisher, Marilyn & House, Lisa & Zhao, Xin, 2018. "Eco-labeling in the Fresh Produce Market: Not All Environmentally Friendly Labels Are Equally Valued," Ecological Economics, Elsevier, vol. 154(C), pages 201-210.
    17. Forte, Annachiara & Zucaro, Amalia & De Vico, Gionata & Fierro, Angelo, 2016. "Carbon footprint of heliciculture: A case study from an Italian experimental farm," Agricultural Systems, Elsevier, vol. 142(C), pages 99-111.
    18. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    19. Tendall, Danielle M. & Gaillard, Gérard, 2015. "Environmental consequences of adaptation to climate change in Swiss agriculture: An analysis at farm level," Agricultural Systems, Elsevier, vol. 132(C), pages 40-51.
    20. Netshipale, A.J. & Raidimi, E.N. & Mashiloane, M.L. & de Boer, I.J.M. & Oosting, S.J., 2022. "Farming system diversity and its drivers in land reform farms of the Waterberg District, South Africa," Land Use Policy, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3637-:d:523834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.