IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i8p5291-5316d39269.html
   My bibliography  Save this article

Finite Element Method Modeling of Sensible Heat Thermal Energy Storage with Innovative Concretes and Comparative Analysis with Literature Benchmarks

Author

Listed:
  • Claudio Ferone

    (Department of Engineering, University of Naples "Parthenope", National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Group Naples Parthenope, Centro Direzionale Naples, Isola C4, 80143 Naples, Italy)

  • Francesco Colangelo

    (Department of Engineering, University of Naples "Parthenope", National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Group Naples Parthenope, Centro Direzionale Naples, Isola C4, 80143 Naples, Italy
    These authors contributed equally to this work.)

  • Domenico Frattini

    (Department of Engineering, University of Naples "Parthenope", National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Group Naples Parthenope, Centro Direzionale Naples, Isola C4, 80143 Naples, Italy
    These authors contributed equally to this work.)

  • Giuseppina Roviello

    (Department of Engineering, University of Naples "Parthenope", National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Group Naples Parthenope, Centro Direzionale Naples, Isola C4, 80143 Naples, Italy
    These authors contributed equally to this work.)

  • Raffaele Cioffi

    (Department of Engineering, University of Naples "Parthenope", National Interuniversity Consortium of Materials Science and Technology (INSTM), Research Group Naples Parthenope, Centro Direzionale Naples, Isola C4, 80143 Naples, Italy
    These authors contributed equally to this work.)

  • Rosa Di Maggio

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Belenzani 12, 38122 Trento, Italy
    These authors contributed equally to this work.)

Abstract

Efficient systems for high performance buildings are required to improve the integration of renewable energy sources and to reduce primary energy consumption from fossil fuels. This paper is focused on sensible heat thermal energy storage (SHTES) systems using solid media and numerical simulation of their transient behavior using the finite element method (FEM). Unlike other papers in the literature, the numerical model and simulation approach has simultaneously taken into consideration various aspects: thermal properties at high temperature, the actual geometry of the repeated storage element and the actual storage cycle adopted. High-performance thermal storage materials from the literatures have been tested and used here as reference benchmarks. Other materials tested are lightweight concretes with recycled aggregates and a geopolymer concrete. Their thermal properties have been measured and used as inputs in the numerical model to preliminarily evaluate their application in thermal storage. The analysis carried out can also be used to optimize the storage system, in terms of thermal properties required to the storage material. The results showed a significant influence of the thermal properties on the performances of the storage elements. Simulation results have provided information for further scale-up from a single differential storage element to the entire module as a function of material thermal properties.

Suggested Citation

  • Claudio Ferone & Francesco Colangelo & Domenico Frattini & Giuseppina Roviello & Raffaele Cioffi & Rosa Di Maggio, 2014. "Finite Element Method Modeling of Sensible Heat Thermal Energy Storage with Innovative Concretes and Comparative Analysis with Literature Benchmarks," Energies, MDPI, vol. 7(8), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:5291-5316:d:39269
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/8/5291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/8/5291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    2. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tania I. Lagunes Vega & Sergio A. Zamora Castro & Oscar Velazquez Camilo & Ma Eugenia Alicia Diaz Vega & Ricardo Campos Campos, 2016. "Thermal Storage Systems Assessment for Energy Sustainability in Housing Units," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    2. Harshwardhan Singh Chouhan & Pawan Kalla & Ravindra Nagar & Pradeep Kumar Gautam & Amar Nath Arora, 2020. "Investigating use of dimensional limestone slurry waste as fine aggregate in mortar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2223-2245, March.
    3. Haiyuan Yang & Li Zhang & Ronghe Liu & Xianli Wen & Yongfei Yang & Lei Zhang & Kai Zhang & Roohollah Askari, 2019. "Thermal Conduction Simulation Based on Reconstructed Digital Rocks with Respect to Fractures," Energies, MDPI, vol. 12(14), pages 1-13, July.
    4. Yudi Wang & Guoqiang Xu, 2022. "Numerical Simulation of Thermal Storage Performance of Different Concrete Floors," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    5. Mohammad Rahjoo & Guido Goracci & Pavel Martauz & Esther Rojas & Jorge S. Dolado, 2022. "Geopolymer Concrete Performance Study for High-Temperature Thermal Energy Storage (TES) Applications," Sustainability, MDPI, vol. 14(3), pages 1-19, February.
    6. Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
    7. Saranprabhu, M.K. & Rajan, K.S., 2019. "Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 141(C), pages 451-459.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gil, Antoni & Barreneche, Camila & Moreno, Pere & Solé, Cristian & Inés Fernández, A. & Cabeza, Luisa F., 2013. "Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale," Applied Energy, Elsevier, vol. 111(C), pages 1107-1113.
    2. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    3. Bruch, A. & Molina, S. & Esence, T. & Fourmigué, J.F. & Couturier, R., 2017. "Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system," Renewable Energy, Elsevier, vol. 103(C), pages 277-285.
    4. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.
    5. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    6. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    7. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    8. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    9. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    10. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    11. Miró, Laia & Oró, Eduard & Boer, Dieter & Cabeza, Luisa F., 2015. "Embodied energy in thermal energy storage (TES) systems for high temperature applications," Applied Energy, Elsevier, vol. 137(C), pages 793-799.
    12. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    13. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    14. Fazlollahi, Samira & Schüler, Nils & Maréchal, François, 2015. "A solid thermal storage model for the optimization of buildings operation strategy," Energy, Elsevier, vol. 88(C), pages 209-222.
    15. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    16. Fernández, Ángel G. & Gomez-Vidal, Judith C., 2017. "Thermophysical properties of low cost lithium nitrate salts produced in northern Chile for thermal energy storage," Renewable Energy, Elsevier, vol. 101(C), pages 120-125.
    17. Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.
    18. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    19. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    20. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:5291-5316:d:39269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.