IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i1p238-277d31991.html
   My bibliography  Save this article

An Integrated Modeling Approach to Evaluate and Optimize Data Center Sustainability, Dependability and Cost

Author

Listed:
  • Gustavo Callou

    (Informatics Center, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife 50740-560, Brazil
    Department of Statistics and Informatics, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n. Campus Dois Irmãos, Recife 52171-900, Brazil)

  • João Ferreira

    (Informatics Center, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife 50740-560, Brazil)

  • Paulo Maciel

    (Informatics Center, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife 50740-560, Brazil)

  • Dietmar Tutsch

    (Automation/Computer Science, University of Wuppertal, Bldg. FC.2.12 Rainer-Gruenter-Str. 21, Wuppertal 42119, Germany)

  • Rafael Souza

    (Informatics Center, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife 50740-560, Brazil)

Abstract

Data centers have evolved dramatically in recent years, due to the advent of social networking services, e-commerce and cloud computing. The conflicting requirements are the high availability levels demanded against the low sustainability impact and cost values. The approaches that evaluate and optimize these requirements are essential to support designers of data center architectures. Our work aims to propose an integrated approach to estimate and optimize these issues with the support of the developed environment, Mercury. Mercury is a tool for dependability, performance and energy flow evaluation. The tool supports reliability block diagrams (RBD), stochastic Petri nets (SPNs), continuous-time Markov chains (CTMC) and energy flow (EFM) models. The EFM verifies the energy flow on data center architectures, taking into account the energy efficiency and power capacity that each device can provide (assuming power systems) or extract (considering cooling components). The EFM also estimates the sustainability impact and cost issues of data center architectures. Additionally, a methodology is also considered to support the modeling, evaluation and optimization processes. Two case studies are presented to illustrate the adopted methodology on data center power systems.

Suggested Citation

  • Gustavo Callou & João Ferreira & Paulo Maciel & Dietmar Tutsch & Rafael Souza, 2014. "An Integrated Modeling Approach to Evaluate and Optimize Data Center Sustainability, Dependability and Cost," Energies, MDPI, vol. 7(1), pages 1-40, January.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:238-277:d:31991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/1/238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/1/238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    2. João Ferreira & Gustavo Callou & Paulo Maciel, 2013. "A Power Load Distribution Algorithm to Optimize Data Center Electrical Flow," Energies, MDPI, vol. 6(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Naeem Haider & Qianchuan Zhao & Xueliang Li, 2020. "Cluster-Based Prediction for Batteries in Data Centers," Energies, MDPI, vol. 13(5), pages 1-17, March.
    2. Bennaceur, Walid Mokhtar & Kloul, Leïla, 2020. "Formal models for safety and performance analysis of a data center system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Li, Xiao-Yang & Liu, Yue & Lin, Yan-Hui & Xiao, Liang-Hua & Zio, Enrico & Kang, Rui, 2021. "A generalized petri net-based modeling framework for service reliability evaluation and management of cloud data centers," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Xiao-Fang Liu & Zhi-Hui Zhan & Jun Zhang, 2017. "An Energy Aware Unified Ant Colony System for Dynamic Virtual Machine Placement in Cloud Computing," Energies, MDPI, vol. 10(5), pages 1-15, May.
    5. Joao Ferreira & Gustavo Callou & Dietmar Tutsch & Paulo Maciel, 2018. "PLDAD—An Algorihm to Reduce Data Center Energy Consumption," Energies, MDPI, vol. 11(10), pages 1-24, October.
    6. Jose Alejandro Cano & Abraham Londoño-Pineda & Maria Fanny Castro & Hugo Bécquer Paz & Carolina Rodas & Tatiana Arias, 2022. "A Bibliometric Analysis and Systematic Review on E-Marketplaces, Open Innovation, and Sustainability," Sustainability, MDPI, vol. 14(9), pages 1-42, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Jing Bai & Chuang Tu & Jiming Bai, 2024. "Measuring and decomposing Beijing’s energy performance: an energy- and exergy-based perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17617-17633, July.
    3. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    4. Kashyap, Sarvesh & Sarkar, Jahar & Kumar, Amitesh, 2021. "Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids," Energy, Elsevier, vol. 225(C).
    5. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    6. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    7. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    8. Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
    9. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    10. Maryam Ghodrat & Bijan Samali & Muhammad Akbar Rhamdhani & Geoffrey Brooks, 2019. "Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process," Energies, MDPI, vol. 12(7), pages 1-20, April.
    11. He, Yueer & Liu, Meng & Kvan, Thomas & Yan, Lu, 2019. "A quantity-quality-based optimization method for indoor thermal environment design," Energy, Elsevier, vol. 170(C), pages 1261-1278.
    12. Bardees Al Hawawsheh, 2020. "€Œthe Impact Of Project Managers’ Soft Skills On Project Management Performance In Jordan†A Literature Review," Noble International Journal of Business and Management Research, Noble Academic Publsiher, vol. 4(3), pages 20-25, March.
    13. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Baskut, Omer & Ozgener, Onder & Ozgener, Leyla, 2010. "Effects of meteorological variables on exergetic efficiency of wind turbine power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3237-3241, December.
    15. Miladi, Rihab & Frikha, Nader & Gabsi, Slimane, 2017. "Exergy analysis of a solar-powered vacuum membrane distillation unit using two models," Energy, Elsevier, vol. 120(C), pages 872-883.
    16. Rezaei, M. & Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C., 2013. "Performance and cost analysis of phase change materials with different melting temperatures in heating systems," Energy, Elsevier, vol. 53(C), pages 173-178.
    17. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
    18. Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
    19. Grubbström, Robert W., 2015. "On the true value of resource consumption when using energy in industrial and other processes," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 377-384.
    20. Ahbabi Saray, Jabraeil & Heyhat, Mohammad Mahdi, 2022. "Modeling of a direct absorption parabolic trough collector based on using nanofluid: 4E assessment and water-energy nexus analysis," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:238-277:d:31991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.