IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp1261-1278.html
   My bibliography  Save this article

A quantity-quality-based optimization method for indoor thermal environment design

Author

Listed:
  • He, Yueer
  • Liu, Meng
  • Kvan, Thomas
  • Yan, Lu

Abstract

This paper proposes a quantity-quality-based optimization method of indoor thermal environment design that emphasizes entransy and exergy analysis. We scrutinized the different focuses of entransy and exergy in examining an energy-related phenomenon or process, and pointed out the need for integrating entransy and exergy for the optimization of indoor thermal environment design. The proposed method contributes to identifying the most energy-efficient solution for attaining the same level of indoor thermal comfort for end users by quantifying the entransy and exergy efficiency of active technologies. With this method, a benchmark technical solution was properly determined and benchmarks for entransy dissipation and exergy loss during the process of thermal environment design were quantified. Entransy dissipation and exergy loss under common technologies were compared with the benchmark values. The concepts of relative entransy savings and relative exergy savings were defined as the evaluation indexes of technical energy efficiency. Referencing winter indoor thermal environment design for residential buildings in hot-summer and cold-winter (HSCW) regions in China, the proposed method was applied to assess the energy efficiency of different heating methods, including an inverter air conditioner, an “air source heat pump + floor radiation,” a “wall-hanging gas heater + floor radiation,” a “wall-hanging gas heater + radiator,” and an oil-filled radiator. This paper recommended that the “air source heat pump + floor radiation” be used for residential buildings in winter in HSCW regions to improve energy efficiency. In addition, the optimization results of the proposed method were compared with that of traditional energy and exergy analysis methods. The results showed that the new method more accurately analyzed the energy flow in indoor thermal environment design, and therefore can serve as an improved way of thinking about follow-up studies on the optimization of heat pump units and the operation strategies of floor radiant heating systems.

Suggested Citation

  • He, Yueer & Liu, Meng & Kvan, Thomas & Yan, Lu, 2019. "A quantity-quality-based optimization method for indoor thermal environment design," Energy, Elsevier, vol. 170(C), pages 1261-1278.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:1261-1278
    DOI: 10.1016/j.energy.2018.12.182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    2. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    3. Xu, Yun-Chao & Chen, Qun & Guo, Zeng-Yuan, 2015. "Entransy dissipation-based constraint for optimization of heat exchanger networks in thermal systems," Energy, Elsevier, vol. 86(C), pages 696-708.
    4. Zhang, Lun & Liu, Xiaohua & Jiang, Yi, 2013. "Application of entransy in the analysis of HVAC systems in buildings," Energy, Elsevier, vol. 53(C), pages 332-342.
    5. Nikolaidis, C. & Probert, D., 1998. "Exergy-method analysis of a two-stage vapour-compression refrigeration-plants performance," Applied Energy, Elsevier, vol. 60(4), pages 241-256, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Hongli & Duan, Mengfan & Yang, Zixu & Ding, Pei & Wu, Yifan & Lin, Borong, 2023. "Evaluation of the intermittent performance of heating terminals based on exergy analysis: Discriminate the impacts of heat and electricity input," Applied Energy, Elsevier, vol. 346(C).
    2. Yu, Jia & Kang, Yanming & Li, He & Zhong, Ke & Zhai, Zhiqiang (John), 2020. "Influence of ventilation-behavior during off-periods on energy-consumption for an intermittently heated room of dormitory buildings," Energy, Elsevier, vol. 197(C).
    3. Hong, Taehoon & Kim, Jimin & Lee, Minhyun, 2019. "A multi-objective optimization model for determining the building design and occupant behaviors based on energy, economic, and environmental performance," Energy, Elsevier, vol. 174(C), pages 823-834.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    2. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    3. Jing Bai & Chuang Tu & Jiming Bai, 2024. "Measuring and decomposing Beijing’s energy performance: an energy- and exergy-based perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17617-17633, July.
    4. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    5. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    6. Kashyap, Sarvesh & Sarkar, Jahar & Kumar, Amitesh, 2021. "Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids," Energy, Elsevier, vol. 225(C).
    7. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    8. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    9. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    10. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    11. Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
    12. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    13. Maryam Ghodrat & Bijan Samali & Muhammad Akbar Rhamdhani & Geoffrey Brooks, 2019. "Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process," Energies, MDPI, vol. 12(7), pages 1-20, April.
    14. Bardees Al Hawawsheh, 2020. "€Œthe Impact Of Project Managers’ Soft Skills On Project Management Performance In Jordan†A Literature Review," Noble International Journal of Business and Management Research, Noble Academic Publsiher, vol. 4(3), pages 20-25, March.
    15. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Zeng, Yaohui & Zhang, Zijun & Kusiak, Andrew, 2015. "Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms," Energy, Elsevier, vol. 86(C), pages 393-402.
    17. Baskut, Omer & Ozgener, Onder & Ozgener, Leyla, 2010. "Effects of meteorological variables on exergetic efficiency of wind turbine power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3237-3241, December.
    18. Miladi, Rihab & Frikha, Nader & Gabsi, Slimane, 2017. "Exergy analysis of a solar-powered vacuum membrane distillation unit using two models," Energy, Elsevier, vol. 120(C), pages 872-883.
    19. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    20. Rezaei, M. & Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C., 2013. "Performance and cost analysis of phase change materials with different melting temperatures in heating systems," Energy, Elsevier, vol. 53(C), pages 173-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:1261-1278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.