IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v207y2021ics095183202030870x.html
   My bibliography  Save this article

A generalized petri net-based modeling framework for service reliability evaluation and management of cloud data centers

Author

Listed:
  • Li, Xiao-Yang
  • Liu, Yue
  • Lin, Yan-Hui
  • Xiao, Liang-Hua
  • Zio, Enrico
  • Kang, Rui

Abstract

A cloud data center is a critical infrastructure whose service reliability is relevant for service delivery. Constituting the carrier of service for cloud computing, the IT architecture of a cloud data center plays an important role, since it directly relates to service reliability. However, most existing research focuses only on the connectivity of the IT architecture and on service considering only the processing procedure. In order to bridge the gap between the existing works and reality, a hierarchical colored generalized stochastic petri net is proposed to evaluate the service reliability by Monte Carlo simulation, which comprehensively considers the connectivity and performance of the IT architecture and the dynamic of service delivery. The modeling and simulation framework is applied to the cloud data center of an insurance company and cost-effective strategies are found to support the configuration, operation and maintenance of the cloud data center.

Suggested Citation

  • Li, Xiao-Yang & Liu, Yue & Lin, Yan-Hui & Xiao, Liang-Hua & Zio, Enrico & Kang, Rui, 2021. "A generalized petri net-based modeling framework for service reliability evaluation and management of cloud data centers," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:reensy:v:207:y:2021:i:c:s095183202030870x
    DOI: 10.1016/j.ress.2020.107381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202030870X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavo Callou & João Ferreira & Paulo Maciel & Dietmar Tutsch & Rafael Souza, 2014. "An Integrated Modeling Approach to Evaluate and Optimize Data Center Sustainability, Dependability and Cost," Energies, MDPI, vol. 7(1), pages 1-40, January.
    2. Ger Koole & Avishai Mandelbaum, 2002. "Queueing Models of Call Centers: An Introduction," Annals of Operations Research, Springer, vol. 113(1), pages 41-59, July.
    3. Tuan Anh Nguyen & Dugki Min & Jong Sou Park, 2015. "A Comprehensive Sensitivity Analysis of a Data Center Network with Server Virtualization for Business Continuity," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-20, October.
    4. Sheng, Jingyu & Prescott, Darren, 2017. "A hierarchical coloured Petri net model of fleet maintenance with cannibalisation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 290-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Rongxi & Li, Yufan & Xu, Jinjin & Wang, Zhen & Gao, Jianmin, 2022. "F2G: A hybrid fault-function graphical model for reliability analysis of complex equipment with coupled faults," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Chiachío, Manuel & Saleh, Ali & Naybour, Susannah & Chiachío, Juan & Andrews, John, 2022. "Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Bensaci, Chaima & Zennir, Youcef & Pomorski, Denis & Innal, Fares & Lundteigen, Mary Ann, 2023. "Collision hazard modeling and analysis in a multi-mobile robots system transportation task with STPA and SPN," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Yang, Zhen & Dong, Xiaobin & Guo, Li, 2023. "Scenario inference model of urban metro system cascading failure under extreme rainfall conditions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Li, Xianxiong & Lan, Xinbo & Mirzaei, A & Aghdam Bonab, Mohammad Jalilvand, 2022. "Reliability and robust resource allocation for Cache-enabled HetNets: QoS-aware mobile edge computing," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Legros & Sihan Ding & Rob Mei & Oualid Jouini, 2017. "Call centers with a postponed callback offer," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1097-1125, October.
    2. Mehmet Tolga Cezik & Pierre L'Ecuyer, 2008. "Staffing Multiskill Call Centers via Linear Programming and Simulation," Management Science, INFORMS, vol. 54(2), pages 310-323, February.
    3. Eduardo González & Leonardo Epstein & Verónica Godoy, 2012. "Optimal number of bypasses: minimizing cost of calls to wireless phones under Calling Party Pays," Annals of Operations Research, Springer, vol. 199(1), pages 179-191, October.
    4. Reynold E. Byers & Kut C. So, 2007. "Note--A Mathematical Model for Evaluating Cross-Sales Policies in Telephone Service Centers," Manufacturing & Service Operations Management, INFORMS, vol. 9(1), pages 1-8, January.
    5. Vyacheslav Abramov, 2006. "Analysis of multiserver retrial queueing system: A martingale approach and an algorithm of solution," Annals of Operations Research, Springer, vol. 141(1), pages 19-50, January.
    6. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    7. Tuan Phung-Duc & Wouter Rogiest & Yutaka Takahashi & Herwig Bruneel, 2016. "Retrial queues with balanced call blending: analysis of single-server and multiserver model," Annals of Operations Research, Springer, vol. 239(2), pages 429-449, April.
    8. Perlman, Yael & Elalouf, Amir & Yechiali, Uri, 2018. "Dynamic allocation of stochastically-arriving flexible resources to random streams of objects with application to kidney cross-transplantation," European Journal of Operational Research, Elsevier, vol. 265(1), pages 169-177.
    9. Kiygi Calli, M. & Weverbergh, M. & Franses, Ph.H.B.F., 2017. "Call center performance with direct response advertising," Econometric Institute Research Papers EI2017-04, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. B. Krishna Kumar & R. Sankar & R. Navaneetha Krishnan & R. Rukmani, 2022. "Performance Analysis of Multi-processor Two-Stage Tandem Call Center Retrial Queues with Non-Reliable Processors," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 95-142, March.
    11. Huh, Woonghee Tim & Lee, Jaywon & Park, Heesang & Park, Kun Soo, 2019. "The potty parity problem: Towards gender equality at restrooms in business facilities," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    12. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    13. Syed Naeem Haider & Qianchuan Zhao & Xueliang Li, 2020. "Cluster-Based Prediction for Batteries in Data Centers," Energies, MDPI, vol. 13(5), pages 1-17, March.
    14. Suri Gurumurthi & Saif Benjaafar, 2004. "Modeling and analysis of flexible queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 755-782, August.
    15. Bennaceur, Walid Mokhtar & Kloul, Leïla, 2020. "Formal models for safety and performance analysis of a data center system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Barth, Wolfgang & Manitz, Michael & Stolletz, Raik, 2008. "Analysis of Two-Level Support Systems with Time-Dependent Overflow - A Banking Application," Hannover Economic Papers (HEP) dp-399, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    17. Alexander Dudin & Chesoong Kim & Olga Dudina & Sergey Dudin, 2016. "Multi-server queueing system with a generalized phase-type service time distribution as a model of call center with a call-back option," Annals of Operations Research, Springer, vol. 239(2), pages 401-428, April.
    18. Ioannis Dimitriou, 2013. "A preemptive resume priority retrial queue with state dependent arrivals, unreliable server and negative customers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 542-571, October.
    19. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    20. Sheng, Jingyu & Prescott, Darren, 2019. "Using a novel hierarchical coloured Petri net to model and optimise fleet spare inventory, cannibalisation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:207:y:2021:i:c:s095183202030870x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.