IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1313-d220340.html
   My bibliography  Save this article

Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process

Author

Listed:
  • Maryam Ghodrat

    (Centre for Infrastructure Engineering, School of Computing, Engineering and Mathematics, Western Sydney University, Sydney 2751, Australia)

  • Bijan Samali

    (Centre for Infrastructure Engineering, School of Computing, Engineering and Mathematics, Western Sydney University, Sydney 2751, Australia)

  • Muhammad Akbar Rhamdhani

    (Department of Mechanical Engineering and Product Design, Swinburne University of Technology, Victoria 3122, Australia)

  • Geoffrey Brooks

    (Department of Mechanical Engineering and Product Design, Swinburne University of Technology, Victoria 3122, Australia)

Abstract

Exergy analysis is one of the useful decision-support tools in assessing the environmental impact related to waste emissions from fossil fuel. This paper proposes a thermodynamic-based design to estimate the exergy quantity and losses during the recycling of copper and other valuable metals out of electronic waste (e-waste) through a secondary copper recycling process. The losses related to recycling, as well as the quality losses linked to metal and oxide dust, can be used as an index of the resource loss and the effectiveness of the selected recycling route. Process-based results are presented for the emission exergy of the major equipment used, which are namely a reduction furnace, an oxidation furnace, and fire-refining, electrorefining, and precious metal-refining (PMR) processes for two scenarios (secondary copper recycling with 50% and 30% waste printed circuit boards in the feed). The results of the work reveal that increasing the percentage of waste printed circuit boards (PCBs) in the feed will lead to an increase in the exergy emission of CO 2 . The variation of the exergy loss for all of the process units involved in the e-waste treatment process illustrated that the oxidation stage is the key contributor to exergy loss, followed by reduction and fire refining. The results also suggest that a fundamental variation of the emission refining through a secondary copper recycling process is necessary for e-waste treatment.

Suggested Citation

  • Maryam Ghodrat & Bijan Samali & Muhammad Akbar Rhamdhani & Geoffrey Brooks, 2019. "Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process," Energies, MDPI, vol. 12(7), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1313-:d:220340
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
    2. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
    3. Ayres, Robert U. & Ayres, Leslie W. & Martinás, Katalin, 1998. "Exergy, waste accounting, and life-cycle analysis," Energy, Elsevier, vol. 23(5), pages 355-363.
    4. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    5. Joanna Kulczycka & Łukasz Lelek & Anna Lewandowska & Herbert Wirth & Joseph D. Bergesen, 2016. "Environmental Impacts of Energy-Efficient Pyrometallurgical Copper Smelting Technologies: The Consequences of Technological Changes from 2010 to 2050," Journal of Industrial Ecology, Yale University, vol. 20(2), pages 304-316, April.
    6. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
    7. Dincer, Ibrahim, 2002. "The role of exergy in energy policy making," Energy Policy, Elsevier, vol. 30(2), pages 137-149, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aydın, Hakan & Turan, Önder & Karakoç, T. Hikmet & Midilli, Adnan, 2013. "Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight," Energy, Elsevier, vol. 58(C), pages 550-560.
    2. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
    3. Zhang, Bo & Chen, G.Q. & Xia, X.H. & Li, S.C. & Chen, Z.M. & Ji, Xi, 2012. "Environmental emissions by Chinese industry: Exergy-based unifying assessment," Energy Policy, Elsevier, vol. 45(C), pages 490-501.
    4. Bo Zhang & Suping Peng & Xiangyang Xu & Lijie Wang, 2011. "Embodiment Analysis for Greenhouse Gas Emissions by Chinese Economy Based on Global Thermodynamic Potentials," Energies, MDPI, vol. 4(11), pages 1-19, November.
    5. Atılgan, Ramazan & Turan, Önder & Altuntaş, Önder & Aydın, Hakan & Synylo, Kateryna, 2013. "Environmental impact assessment of a turboprop engine with the aid of exergy," Energy, Elsevier, vol. 58(C), pages 664-671.
    6. Turan, Onder, 2015. "An exergy way to quantify sustainability metrics for a high bypass turbofan engine," Energy, Elsevier, vol. 86(C), pages 722-736.
    7. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
    8. Shao, Ling & Wu, Zi & Chen, G.Q., 2013. "Exergy based ecological footprint accounting for China," Ecological Modelling, Elsevier, vol. 252(C), pages 83-96.
    9. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    10. Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.
    11. Dai, Jing & Chen, Bin & Sciubba, Enrico, 2014. "Extended exergy based ecological accounting for the transportation sector in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 229-237.
    12. van der Kroon, Bianca & Brouwer, Roy & van Beukering, Pieter J.H., 2013. "The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 504-513.
    13. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    14. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    15. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    16. Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
    17. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
    18. Sogut, Z. & Ilten, N. & Oktay, Z., 2010. "Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production," Energy, Elsevier, vol. 35(9), pages 3821-3826.
    19. Warr, Benjamin & Ayres, Robert, 2006. "REXS: A forecasting model for assessing the impact of natural resource consumption and technological change on economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 17(3), pages 329-378, September.
    20. Russo, Sofia & Verda, Vittorio, 2020. "Exergoeconomic analysis of a Mechanical Biological Treatment plant in an Integrated Solid Waste Management system including uncertainties," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1313-:d:220340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.