IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i10p6282-6305d40802.html
   My bibliography  Save this article

Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO 2 Batteries

Author

Listed:
  • Liqiang Zhang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China)

  • Lixin Wang

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China)

  • Chao Lyu

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China)

  • Junfu Li

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China)

  • Jun Zheng

    (School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China)

Abstract

Non-destructive analysis of degradation mechanisms can be very beneficial for the prognostics and health management (PHM) study of lithium-ion batteries. In this paper, a type of graphite/LiCoO 2 battery was cycle aged at high ambient temperature, then 25 parameters of the multi-physics model were identified. Nine key parameters degraded with the cycle life, and they were treated as indicators of battery degradation. Accordingly, the degradation mechanism was discussed by using the multi-physics model and key parameters, and the reasons for capacity fade and the internal resistance increase were analyzed in detail. All evidence indicates that the formation reaction of the solid electrolyte interface (SEI) film is the main cause of battery degradation at high ambient temperature.

Suggested Citation

  • Liqiang Zhang & Lixin Wang & Chao Lyu & Junfu Li & Jun Zheng, 2014. "Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO 2 Batteries," Energies, MDPI, vol. 7(10), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:10:p:6282-6305:d:40802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/10/6282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/10/6282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Feng & Rengui Lu & Chunbo Zhu, 2014. "A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range," Energies, MDPI, vol. 7(5), pages 1-29, May.
    2. Hongwen He & Hongzhou Qin & Xiaokun Sun & Yuanpeng Shui, 2013. "Comparison Study on the Battery SoC Estimation with EKF and UKF Algorithms," Energies, MDPI, vol. 6(10), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Junfu & Wang, Lixin & Lyu, Chao & Zhang, Liqiang & Wang, Han, 2015. "Discharge capacity estimation for Li-ion batteries based on particle filter under multi-operating conditions," Energy, Elsevier, vol. 86(C), pages 638-648.
    2. Li, Junfu & Wang, Lixin & Lyu, Chao & Wang, Dafang & Pecht, Michael, 2019. "Parameter updating method of a simplified first principles-thermal coupling model for lithium-ion batteries," Applied Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Hong Zhang & Li Zhao & Yong Chen, 2015. "A Lossy Counting-Based State of Charge Estimation Method and Its Application to Electric Vehicles," Energies, MDPI, vol. 8(12), pages 1-18, December.
    3. Xiang Bao & Yuefeng Liu & Bo Liu & Haofeng Liu & Yue Wang, 2023. "Multi-State Online Estimation of Lithium-Ion Batteries Based on Multi-Task Learning," Energies, MDPI, vol. 16(7), pages 1-20, March.
    4. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    5. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    6. Fei Feng & Rengui Lu & Guo Wei & Chunbo Zhu, 2015. "Online Estimation of Model Parameters and State of Charge of LiFePO 4 Batteries Using a Novel Open-Circuit Voltage at Various Ambient Temperatures," Energies, MDPI, vol. 8(4), pages 1-27, April.
    7. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    8. Nicola Campagna & Vincenzo Castiglia & Rosario Miceli & Rosa Anna Mastromauro & Ciro Spataro & Marco Trapanese & Fabio Viola, 2020. "Battery Models for Battery Powered Applications: A Comparative Study," Energies, MDPI, vol. 13(16), pages 1-26, August.
    9. Yonghui Sun & Yi Wang & Linquan Bai & Yinlong Hu & Denis Sidorov & Daniil Panasetsky, 2018. "Parameter Estimation of Electromechanical Oscillation Based on a Constrained EKF with C&I-PSO," Energies, MDPI, vol. 11(8), pages 1-15, August.
    10. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.
    11. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    12. Xiong, Rui & Duan, Yanzhou & Zhang, Kaixuan & Lin, Da & Tian, Jinpeng & Chen, Cheng, 2023. "State-of-charge estimation for onboard LiFePO4 batteries with adaptive state update in specific open-circuit-voltage ranges," Applied Energy, Elsevier, vol. 349(C).
    13. Claudio Rossi & Carlo Falcomer & Luca Biondani & Davide Pontara, 2022. "Genetically Optimized Extended Kalman Filter for State of Health Estimation Based on Li-Ion Batteries Parameters," Energies, MDPI, vol. 15(9), pages 1-18, May.
    14. Yin Hua & Min Xu & Mian Li & Chengbin Ma & Chen Zhao, 2015. "Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles," Energies, MDPI, vol. 8(5), pages 1-22, April.
    15. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    16. Yassine Benômar & Julien Croonen & Björn Verrelst & Joeri Van Mierlo & Omar Hegazy, 2021. "Model-Based Control System Design of Brushless Doubly Fed Reluctance Machines Using an Unscented Kalman Filter," Energies, MDPI, vol. 14(24), pages 1-23, December.
    17. Xiaobin Hong & Nianzhi Li & Jinheng Feng & Qingzhao Kong & Guixiong Liu, 2015. "Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography," Energies, MDPI, vol. 8(2), pages 1-23, January.
    18. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
    19. Jianping Gao & Yongzhi Zhang & Hongwen He, 2015. "A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 8(8), pages 1-19, August.
    20. Richard Bustos & Stephen Andrew Gadsden & Pawel Malysz & Mohammad Al-Shabi & Shohel Mahmud, 2022. "Health Monitoring of Lithium-Ion Batteries Using Dual Filters," Energies, MDPI, vol. 15(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:10:p:6282-6305:d:40802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.