Multi-State Online Estimation of Lithium-Ion Batteries Based on Multi-Task Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
- Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature," Energies, MDPI, vol. 11(9), pages 1-17, September.
- Shulin Liu & Naxin Cui & Chenghui Zhang, 2017. "An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 10(9), pages 1-14, September.
- Fei Feng & Rengui Lu & Chunbo Zhu, 2014. "A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range," Energies, MDPI, vol. 7(5), pages 1-29, May.
- Zhang, Xu & Wang, Yujie & Wu, Ji & Chen, Zonghai, 2018. "A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter," Applied Energy, Elsevier, vol. 216(C), pages 442-451.
- Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2022. "Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model," Energy, Elsevier, vol. 240(C).
- Hongwen He & Hongzhou Qin & Xiaokun Sun & Yuanpeng Shui, 2013. "Comparison Study on the Battery SoC Estimation with EKF and UKF Algorithms," Energies, MDPI, vol. 6(10), pages 1-13, September.
- Zineb Bouabidi & Fares Almomani & Easa I. Al-musleh & Mary A. Katebah & Mohamed M. Hussein & Abdur Rahman Shazed & Iftekhar A. Karimi & Hassan Alfadala, 2021. "Study on Boil-off Gas (BOG) Minimization and Recovery Strategies from Actual Baseload LNG Export Terminal: Towards Sustainable LNG Chains," Energies, MDPI, vol. 14(12), pages 1-22, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Liqiang Zhang & Lixin Wang & Chao Lyu & Junfu Li & Jun Zheng, 2014. "Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO 2 Batteries," Energies, MDPI, vol. 7(10), pages 1-24, September.
- Qi, Kaijian & Zhang, Weigang & Zhou, Wei & Cheng, Jifu, 2022. "Integrated battery power capability prediction and driving torque regulation for electric vehicles: A reduced order MPC approach," Applied Energy, Elsevier, vol. 317(C).
- Ruan, Guanqiang & Liu, Zixi & Cheng, Jinrun & Hu, Xing & Chen, Song & Liu, Shiwen & Guo, Yong & Yang, Kuo, 2024. "A deep learning model for predicting the state of energy in lithium-ion batteries based on magnetic field effects," Energy, Elsevier, vol. 304(C).
- Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
- Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Qian, Cheng & Guan, Hongsheng & Xu, Binghui & Xia, Quan & Sun, Bo & Ren, Yi & Wang, Zili, 2024. "A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions," Energy, Elsevier, vol. 294(C).
- Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
- Lai, Xin & Huang, Yunfeng & Gu, Huanghui & Han, Xuebing & Feng, Xuning & Dai, Haifeng & Zheng, Yuejiu & Ouyang, Minggao, 2022. "Remaining discharge energy estimation for lithium-ion batteries based on future load prediction considering temperature and ageing effects," Energy, Elsevier, vol. 238(PA).
- Kuang, Pan & Zhou, Fei & Xu, Shuai & Li, Kangqun & Xu, Xiaobin, 2024. "State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter," Energy, Elsevier, vol. 300(C).
- Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Hong Zhang & Li Zhao & Yong Chen, 2015. "A Lossy Counting-Based State of Charge Estimation Method and Its Application to Electric Vehicles," Energies, MDPI, vol. 8(12), pages 1-18, December.
- Shi, Haotian & Wang, Shunli & Fernandez, Carlos & Yu, Chunmei & Xu, Wenhua & Dablu, Bobobee Etse & Wang, Liping, 2022. "Improved multi-time scale lumped thermoelectric coupling modeling and parameter dispersion evaluation of lithium-ion batteries," Applied Energy, Elsevier, vol. 324(C).
- Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
- Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
- Feng, Fei & Yang, Rui & Meng, Jinhao & Xie, Yi & Zhang, Zhiguo & Chai, Yi & Mou, Lisha, 2022. "Electrochemical impedance characteristics at various conditions for commercial solid–liquid electrolyte lithium-ion batteries: Part. 2. Modeling and prediction," Energy, Elsevier, vol. 243(C).
- Molla Shahadat Hossain Lipu & Tahia F. Karim & Shaheer Ansari & Md. Sazal Miah & Md. Siddikur Rahman & Sheikh T. Meraj & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan, 2022. "Intelligent SOX Estimation for Automotive Battery Management Systems: State-of-the-Art Deep Learning Approaches, Open Issues, and Future Research Opportunities," Energies, MDPI, vol. 16(1), pages 1-31, December.
- Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
- Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
More about this item
Keywords
deep learning; lithium-ion batteries; multi-state estimation of batteries; multi-task learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3002-:d:1107072. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.