IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i3p1745-1753.html
   My bibliography  Save this article

Energy and environmental balance of biogas for dual-fuel mobile applications

Author

Listed:
  • Lacour, S.
  • Chinese, T.
  • Alkadee, D.
  • Perilhon, C.
  • Descombes, G.

Abstract

Considerable research is currently being devoted to seeking alternative fuels to comply with transportation needs while reducing the environmental impact of this sector. Within the transport activity sector, on road vehicles and agricultural machinery require around 2Mtoe energy in France. The anaerobic digestion of farm waste could roughly cover these needs. This paper aims to study the environmental and energy interest of this short power supply path. An ideal biogas production system has been built up from the average characteristics of current rural biogas plants in France. Pollutant emissions, energy demands and production are assessed for various scenarios in order to produce methane for dual fuel engines. Life cycle assessment (LCA) is used to evaluate the environmental impact of dual fuel agricultural machines, compared to diesel engines. The energy balance is always in disfavour of biogas fuel, whereas LCA energy indicators indicate a benefit for biogas production. This gap is related to the way in which the input of biomass energy is handled: in conventional biofuel LCA, this energy is not taken into account. A carbon balance is then presented to discuss the impact of biogas on climate change. Dual fuel engines were found to be interesting for their small impact. We also show, however, how the biogenic carbon assumption and the choice of allocation for the avoided methane emissions of anaerobic digestion are crucial in quantifying CO2 savings. Other environmental issues of biogas fuel were examined. Results indicate that are management and green electricity are the key points for a sustainable biogas fuel. It is concluded that biofuel environmental damage is reduced if energy needs during biofuel production are covered by the production process itself. As agricultural equipment is used during the biofuel production process, this implies that a high substitution rate should be used for this equipment.

Suggested Citation

  • Lacour, S. & Chinese, T. & Alkadee, D. & Perilhon, C. & Descombes, G., 2012. "Energy and environmental balance of biogas for dual-fuel mobile applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1745-1753.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1745-1753
    DOI: 10.1016/j.rser.2011.11.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111005752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.11.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastien Moras, 2008. "Environmental assessment of energy production by combustion of biogas provided by the anaerobic digestion of agricultural biomass," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 9(4), pages 413-425.
    2. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    3. Manfred Lenzen, 2010. "Current State of Development of Electricity-Generating Technologies: A Literature Review," Energies, MDPI, vol. 3(3), pages 1-130, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eyko Medeiros Rios & Danielle Rodrigues Moraes & Gisele Maria Ribeiro Vieira & Bárbara Noronha Gonçalves & Ronney Arismel Mancebo Boloy, 2022. "Dual-fuel compression-ignition engines fuelled with biofuels. A bibliometric review," Environment Systems and Decisions, Springer, vol. 42(1), pages 8-25, March.
    2. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    3. Havukainen, J. & Uusitalo, V. & Niskanen, A. & Kapustina, V. & Horttanainen, M., 2014. "Evaluation of methods for estimating energy performance of biogas production," Renewable Energy, Elsevier, vol. 66(C), pages 232-240.
    4. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    2. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    3. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    4. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    5. Sahoo, Bibhuti B. & Saha, Ujjwal K. & Sahoo, Niranjan, 2011. "Theoretical performance limits of a syngas–diesel fueled compression ignition engine from second law analysis," Energy, Elsevier, vol. 36(2), pages 760-769.
    6. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.
    7. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    8. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    9. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    10. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    11. Josip Lorincz & Ivana Bule & Milutin Kapov, 2014. "Performance Analyses of Renewable and Fuel Power Supply Systems for Different Base Station Sites," Energies, MDPI, vol. 7(12), pages 1-31, November.
    12. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    13. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Hosmath, R.S. & Donateo, Teresa & Tewari, P.G., 2016. "Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels," Renewable Energy, Elsevier, vol. 93(C), pages 483-501.
    14. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Hotta, Santosh Kumar & Sahoo, Niranjan & Mohanty, Kaustubha, 2019. "Comparative assessment of a spark ignition engine fueled with gasoline and raw biogas," Renewable Energy, Elsevier, vol. 134(C), pages 1307-1319.
    16. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    17. Adhirath Mandal & Haengmuk Cho & Bhupendra Singh Chauhan, 2021. "ANN Prediction of Performance and Emissions of CI Engine Using Biogas Flow Variation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    18. Sharma, Prabhakar & Bora, Bhaskor J., 2023. "Modeling and optimization of a CI engine running on producer gas fortified with oxyhydrogen," Energy, Elsevier, vol. 270(C).
    19. S.D. Martinez-Boggio & S.S. Merola & P. Teixeira Lacava & A. Irimescu & P.L. Curto-Risso, 2019. "Effect of Fuel and Air Dilution on Syngas Combustion in an Optical SI Engine," Energies, MDPI, vol. 12(8), pages 1-23, April.
    20. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1745-1753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.