IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i8p3019-3032d19390.html
   My bibliography  Save this article

Improving Production of Bioethanol from Duckweed ( Landoltia punctata ) by Pectinase Pretreatment

Author

Listed:
  • Qian Chen

    (Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (CAS), Chengdu 610041, China
    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

  • Yanling Jin

    (Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (CAS), Chengdu 610041, China)

  • Guohua Zhang

    (Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (CAS), Chengdu 610041, China)

  • Yang Fang

    (Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (CAS), Chengdu 610041, China)

  • Yao Xiao

    (Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (CAS), Chengdu 610041, China
    Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

  • Hai Zhao

    (Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (CAS), Chengdu 610041, China)

Abstract

Landoltia punctata , a widely distributed duckweed strain with the ability to accumulate starch, was used as a novel feedstock for bioethanol production by Saccharomyces cerevisiae . To improve ethanol production, pectinase pretreatment was used to release much more glucose from L. punctata mash and the pretreatment conditions (enzyme loading, temperature and pretreatment time) for the duckweed were optimized by using a surface response design. The results showed that maximum glucose yield was 218.64 ± 3.10 mg/g dry matter, which is a 142% increase compared to the untreated mash, with a pectinase dose of 26.54 pectin transeliminase unit/g mash at 45 °C for 300 min. Pectinase pretreatment apparently changed the ultrastructure of L. punctata , as evidenced by scanning electron microscopy analysis. Further fermentation experiments were performed and 30.8 ± 0.8 g/L of ethanol concentration, 90.04% of fermentation efficiency and 2.20 g/L / h of productivity rate were achieved. This is the highest ethanol concentration reported to date using duckweed as the feedstock.

Suggested Citation

  • Qian Chen & Yanling Jin & Guohua Zhang & Yang Fang & Yao Xiao & Hai Zhao, 2012. "Improving Production of Bioethanol from Duckweed ( Landoltia punctata ) by Pectinase Pretreatment," Energies, MDPI, vol. 5(8), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:8:p:3019-3032:d:19390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/8/3019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/8/3019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    2. Oron, Gideon, 1994. "Duckweed culture for wastewater renovation and biomass production," Agricultural Water Management, Elsevier, vol. 26(1-2), pages 27-40, September.
    3. Perlack, R.D. & Turhollow, A.F., 2003. "Feedstock cost analysis of corn stover residues for further processing," Energy, Elsevier, vol. 28(14), pages 1395-1403.
    4. Ge, Leilei & Wang, Peng & Mou, Haijin, 2011. "Study on saccharification techniques of seaweed wastes for the transformation of ethanol," Renewable Energy, Elsevier, vol. 36(1), pages 84-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayrakci, Asiye Gül & Koçar, Günnur, 2014. "Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 306-316.
    2. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    3. František Kačík & Jaroslav Ďurkovič & Danica Kačíková, 2012. "Chemical Profiles of Wood Components of Poplar Clones for Their Energy Utilization," Energies, MDPI, vol. 5(12), pages 1-14, December.
    4. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Chen, Xiaoyi & Wang, Xinhui & Fang, Yang & Zhang, Yin & Huang, Mengjun & Zhao, Hai, 2019. "The influence of different plant hormones on biomass and starch accumulation of duckweed: A renewable feedstock for bioethanol production," Renewable Energy, Elsevier, vol. 138(C), pages 659-665.
    2. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2019. "Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 626-642.
    3. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    4. Bayrakci, Asiye Gül & Koçar, Günnur, 2014. "Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 306-316.
    5. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    7. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    8. Diep, Nhu Quynh & Fujimoto, Shinji & Minowa, Tomoaki & Sakanishi, Kinya & Nakagoshi, Nobukazu, 2012. "Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam," Applied Energy, Elsevier, vol. 93(C), pages 205-211.
    9. Qu, Chunyun & Dai, Kaiqun & Fu, Hongxin & Wang, Jufang, 2021. "Enhanced ethanol production from lignocellulosic hydrolysates by Thermoanaerobacterium aotearoense SCUT27/ΔargR1864 with improved lignocellulose-derived inhibitors tolerance," Renewable Energy, Elsevier, vol. 173(C), pages 652-661.
    10. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    12. Miranowski, John & Rosburg, Alicia, 2010. "An Economic Breakeven Model of Cellulosic Feedstock Production and Ethanol Conversion with Implied Carbon Pricing," Staff General Research Papers Archive 13166, Iowa State University, Department of Economics.
    13. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    14. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    15. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    16. Francisca Gwaze & Marizvikutu Mwale, 2015. "The Prospect of Duckweed in Pig Nutrition: A Review," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 7(11), pages 189-189, October.
    17. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    18. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    19. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    20. Kostas, Emily T. & Adams, Jessica M.M. & Ruiz, Héctor A. & Durán-Jiménez, Gabriela & Lye, Gary J., 2021. "Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:8:p:3019-3032:d:19390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.