IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i8p2794-2817d19186.html
   My bibliography  Save this article

On the Efficiency of a Two-Power-Level Flywheel-Based All-Electric Driveline

Author

Listed:
  • Johan Abrahamsson

    (Division for Electricity, Department of Engineering Sciences, Uppsala University, Uppsala 75105, Sweden)

  • Janaína Gonçalves De Oliveira

    (Division for Electricity, Department of Engineering Sciences, Uppsala University, Uppsala 75105, Sweden)

  • Juan De Santiago

    (Division for Electricity, Department of Engineering Sciences, Uppsala University, Uppsala 75105, Sweden)

  • Johan Lundin

    (Division for Electricity, Department of Engineering Sciences, Uppsala University, Uppsala 75105, Sweden)

  • Hans Bernhoff

    (Division for Electricity, Department of Engineering Sciences, Uppsala University, Uppsala 75105, Sweden)

Abstract

This paper presents experimental results on an innovative electric driveline employing a kinetic energy storage device as energy buffer. A conceptual division of losses in the system was created, separating the complete system into three parts according to their function. This conceptualization of the system yielded a meaningful definition of the concept of efficiency. Additionally, a thorough theoretical framework for the prediction of losses associated with energy storage and transfer in the system was developed. A large number of spin-down tests at varying pressure levels were performed. A separation of the measured data into the different physical processes responsible for power loss was achieved from the corresponding dependence on rotational velocity. This comparison yielded an estimate of the perpendicular resistivity of the stranded copper conductor of 2.5 × 10 −8 ± 3.5 × 10 −9 . Further, power and energy were measured system-wide during operation, and an analysis of the losses was performed. The analytical solution was able to reproduce the measured distribution of losses in the system to an accuracy of 4.7% (95% CI). It was found that the losses attributed to the function of kinetic energy storage in the system amounted to between 45% and 65%, depending on usage.

Suggested Citation

  • Johan Abrahamsson & Janaína Gonçalves De Oliveira & Juan De Santiago & Johan Lundin & Hans Bernhoff, 2012. "On the Efficiency of a Two-Power-Level Flywheel-Based All-Electric Driveline," Energies, MDPI, vol. 5(8), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:8:p:2794-2817:d:19186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/8/2794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/8/2794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bolund, Björn & Bernhoff, Hans & Leijon, Mats, 2007. "Flywheel energy and power storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 235-258, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magnus Hedlund & Tobias Kamf & Juan De Santiago & Johan Abrahamsson & Hans Bernhoff, 2017. "Reluctance Machine for a Hollow Cylinder Flywheel," Energies, MDPI, vol. 10(3), pages 1-18, March.
    2. Magnus Hedlund & Johan Lundin & Juan De Santiago & Johan Abrahamsson & Hans Bernhoff, 2015. "Flywheel Energy Storage for Automotive Applications," Energies, MDPI, vol. 8(10), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okou, R. & Sebitosi, A.B. & Pillay, P., 2011. "Flywheel rotor manufacture for rural energy storage in sub-Saharan Africa," Energy, Elsevier, vol. 36(10), pages 6138-6145.
    2. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    3. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    4. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    5. Jin, Rui & Li, Lei & Liang, Xiaoling & Zou, Xiang & Yang, Zeyuan & Ge, Shuzhi Sam & Huang, Haihong, 2024. "Energy-efficient design of the powertrain for mechanical-electro-hydraulic equipment via configuring multidimensional controllable variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    6. Hegazy, Omar & Barrero, Ricardo & Van den Bossche, Peter & El Baghdadi, Mohamed & Smekens, Jelle & Van Mierlo, Joeri & Vriens, Wouter & Bogaerts, Bruno, 2016. "Modeling, analysis and feasibility study of new drivetrain architectures for off-highway vehicles," Energy, Elsevier, vol. 109(C), pages 1056-1074.
    7. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    8. Cheng Gong & Shiwen Zhang & Feng Zhang & Jianguo Jiang & Xinheng Wang, 2014. "An Integrated Energy-Efficient Operation Methodology for Metro Systems Based on a Real Case of Shanghai Metro Line One," Energies, MDPI, vol. 7(11), pages 1-25, November.
    9. Fei Lin & Shihui Liu & Zhihong Yang & Yingying Zhao & Zhongping Yang & Hu Sun, 2016. "Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm," Energies, MDPI, vol. 9(3), pages 1-21, March.
    10. Rupp, A. & Baier, H. & Mertiny, P. & Secanell, M., 2016. "Analysis of a flywheel energy storage system for light rail transit," Energy, Elsevier, vol. 107(C), pages 625-638.
    11. Mahto, Tarkeshwar & Mukherjee, V., 2015. "Energy storage systems for mitigating the variability of isolated hybrid power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1564-1577.
    12. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    13. Chiwoong Song & Dongsuk Kum & Kyung-Soo Kim, 2018. "Feasibility Analysis and Performance Evaluation of a Novel Power-Split Flywheel Hybrid Vehicle," Energies, MDPI, vol. 11(7), pages 1-25, July.
    14. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    15. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    16. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2009. "Techno-economic comparison of energy storage systems for island autonomous electrical networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 378-392, February.
    18. Zongjun Yin & Xuegang Ma & Chunying Zhang & Rong Su & Qingqing Wang, 2023. "A Logic Threshold Control Strategy to Improve the Regenerative Braking Energy Recovery of Electric Vehicles," Sustainability, MDPI, vol. 15(24), pages 1-33, December.
    19. Brandt, Adam R. & Teichgraeber, Holger & Kang, Charles A. & Barnhart, Charles J. & Carbajales-Dale, Michael A. & Sgouridis, Sgouris, 2021. "Blow wind blow: Capital deployment in variable energy systems," Energy, Elsevier, vol. 224(C).
    20. Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:8:p:2794-2817:d:19186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.