IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i5p826-844d12461.html
   My bibliography  Save this article

Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1 LiNH 2 /MgH 2 Mixture

Author

Listed:
  • Donald L. Anton

    (Savannah River National Laboratory/Aiken, SC 29803, USA)

  • Christine J. Price

    (Savannah River National Laboratory/Aiken, SC 29803, USA)

  • Joshua Gray

    (Savannah River National Laboratory/Aiken, SC 29803, USA)

Abstract

The destabilized complex hydride system composed of LiNH 2 :MgH 2 (1:1 molar ratio) is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of ~32 kJ/mole H 2 was first predicted by Alapati et al. utilizing first principle density function theory (DFT) calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA). This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 °C to 200 °C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert’s apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH 3 formation.

Suggested Citation

  • Donald L. Anton & Christine J. Price & Joshua Gray, 2011. "Affects of Mechanical Milling and Metal Oxide Additives on Sorption Kinetics of 1:1 LiNH 2 /MgH 2 Mixture," Energies, MDPI, vol. 4(5), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:5:p:826-844:d:12461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/5/826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/5/826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Chen & Zhitao Xiong & Jizhong Luo & Jianyi Lin & Kuang Lee Tan, 2002. "Interaction of hydrogen with metal nitrides and imides," Nature, Nature, vol. 420(6913), pages 302-304, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastiano Garroni & Antonio Santoru & Hujun Cao & Martin Dornheim & Thomas Klassen & Chiara Milanese & Fabiana Gennari & Claudio Pistidda, 2018. "Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage," Energies, MDPI, vol. 11(5), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastiano Garroni & Antonio Santoru & Hujun Cao & Martin Dornheim & Thomas Klassen & Chiara Milanese & Fabiana Gennari & Claudio Pistidda, 2018. "Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage," Energies, MDPI, vol. 11(5), pages 1-28, April.
    2. Zhou, Li, 2005. "Progress and problems in hydrogen storage methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 395-408, August.
    3. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2015. "Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1791-1808.
    4. Thi-Thu Le & Claudio Pistidda & Julián Puszkiel & María Victoria Castro Riglos & David Michael Dreistadt & Thomas Klassen & Martin Dornheim, 2021. "Enhanced Hydrogen Storage Properties of Li-RHC System with In-House Synthesized AlTi 3 Nanoparticles," Energies, MDPI, vol. 14(23), pages 1-16, November.
    5. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    6. Liu, Yongfeng & Zhang, Wenxuan & Zhang, Xin & Yang, Limei & Huang, Zhenguo & Fang, Fang & Sun, Wenping & Gao, Mingxia & Pan, Hongge, 2023. "Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Han Wang & Hujun Cao & Guotao Wu & Teng He & Ping Chen, 2015. "The improved Hydrogen Storage Performances of the Multi-Component Composite: 2Mg(NH 2 ) 2 –3LiH–LiBH 4," Energies, MDPI, vol. 8(7), pages 1-12, July.
    8. Niaz, Saba & Manzoor, Taniya & Pandith, Altaf Hussain, 2015. "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 457-469.
    9. Kasper T. Møller & Drew Sheppard & Dorthe B. Ravnsbæk & Craig E. Buckley & Etsuo Akiba & Hai-Wen Li & Torben R. Jensen, 2017. "Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage," Energies, MDPI, vol. 10(10), pages 1-30, October.
    10. Tunç, Nihat & Rakap, Murat, 2020. "Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis," Renewable Energy, Elsevier, vol. 155(C), pages 1222-1230.
    11. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Gökhan Gizer & Hujun Cao & Julián Puszkiel & Claudio Pistidda & Antonio Santoru & Weijin Zhang & Teng He & Ping Chen & Thomas Klassen & Martin Dornheim, 2019. "Enhancement Effect of Bimetallic Amide K 2 Mn(NH 2 ) 4 and In-Situ Formed KH and Mn 4 N on the Dehydrogenation/Hydrogenation Properties of Li–Mg–N–H System," Energies, MDPI, vol. 12(14), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:5:p:826-844:d:12461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.