IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i12p1972-1990d10636.html
   My bibliography  Save this article

A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment

Author

Listed:
  • Hak-Man Kim

    (Department of Electrical Engineering, University of Incheon/12-1, Sondo-dong, Yeonsu-gu, Incheon, 406-840, Korea)

  • Tetsuo Kinoshita

    (Graduate School of Information Science, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan)

  • Myong-Chul Shin

    (School of Information & Communication Engineering, Sungkyunkwan University/300, Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746, Korea)

Abstract

One of the most important requirements of microgrid operation is to maintain a constant frequency such as 50 Hz or 60 Hz, which is closely related to a power balance between supply and demand. In general, microgrids are connected to power grids and surplus/shortage power of microgrids is traded with power grids. Since islanded microgrids are isolated from any power grids, the decrease in generation or load-shedding can be used to maintain the frequency when a power imbalance between supply and demand occurs. The power imbalance restricts the electricity use of consumers in the case of supply shortage and the power supply of suppliers in the case of supply surplus. Therefore, the islanded microgrid should be operated to reduce power imbalance conditions. Meanwhile, the microgrid is a small-scale power system and the employment of skillful operators for effective operation of its components requires high costs. Therefore, automatic operation of the components is effective realistically. In addition, the components are distributed in the microgrid and their operation should consider their owners’ profits. For these reasons, a multiagent system application can be a good alternative for microgrid operation. In this paper, we present a multiagent system for autonomous operation of the islanded microgrid on a power market environment. The proposed multiagent system is designed based on a cooperative operation scheme. We show the functionality and the feasibility of the proposed multiagent system through several tests.

Suggested Citation

  • Hak-Man Kim & Tetsuo Kinoshita & Myong-Chul Shin, 2010. "A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment," Energies, MDPI, vol. 3(12), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:12:p:1972-1990:d:10636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/12/1972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/12/1972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
    2. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    3. Zhe Xiao & Tinghua Li & Ming Huang & Jihong Shi & Jingjing Yang & Jiang Yu & Wei Wu, 2010. "Hierarchical MAS Based Control Strategy for Microgrid," Energies, MDPI, vol. 3(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    2. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    3. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2015. "A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control," Energies, MDPI, vol. 8(6), pages 1-16, June.
    4. Zhirong Xu & Ping Yang & Zhiji Zeng & Jiajun Peng & Zhuoli Zhao, 2016. "Black Start Strategy for PV-ESS Multi-Microgrids with Three-Phase/Single-Phase Architecture," Energies, MDPI, vol. 9(5), pages 1-14, May.
    5. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Ibrahem, I.S., 2017. "Existing and recommended renewable and sustainable energy development in Nigeria based on autonomous energy and microgrid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 820-838.
    6. Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2017. "Optimal Operation of Microgrids Considering Auto-Configuration Function Using Multiagent System," Energies, MDPI, vol. 10(10), pages 1-16, September.
    7. Wei-Tzer Huang & Tsai-Hsiang Chen & Hong-Ting Chen & Jhih-Siang Yang & Kuo-Lung Lian & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2015. "A Two-stage Optimal Network Reconfiguration Approach for Minimizing Energy Loss of Distribution Networks Using Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 8(12), pages 1-17, December.
    8. Xi Wu & Ping Jiang & Jing Lu, 2014. "Multiagent-Based Distributed Load Shedding for Islanded Microgrids," Energies, MDPI, vol. 7(9), pages 1-13, September.
    9. Ming-Tse Kuo & Shiue-Der Lu, 2013. "Design and Implementation of Real-Time Intelligent Control and Structure Based on Multi-Agent Systems in Microgrids," Energies, MDPI, vol. 6(11), pages 1-15, November.
    10. Ning Zhang & Wei Gu & Haojun Yu & Wei Liu, 2013. "Application of Coordinated SOFC and SMES Robust Control for Stabilizing Tie-Line Power," Energies, MDPI, vol. 6(4), pages 1-16, April.
    11. Tsuguhiro Takuno & Yutaro Kitamori & Ryo Takahashi & Takashi Hikihara, 2011. "AC Power Routing System in Home Based on Demand and Supply Utilizing Distributed Power Sources," Energies, MDPI, vol. 4(5), pages 1-10, April.
    12. Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2019. "Q-Learning-Based Operation Strategy for Community Battery Energy Storage System (CBESS) in Microgrid System," Energies, MDPI, vol. 12(9), pages 1-17, May.
    13. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim, 2016. "Optimal Electric and Heat Energy Management of Multi-Microgrids with Sequentially-Coordinated Operations," Energies, MDPI, vol. 9(6), pages 1-18, June.
    14. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim & Yong Hoon Im & Jae Yong Lee, 2015. "Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations," Energies, MDPI, vol. 8(8), pages 1-20, August.
    15. Wei Gu & Wei Liu & Zhi Wu & Bo Zhao & Wu Chen, 2013. "Cooperative Control to Enhance the Frequency Stability of Islanded Microgrids with DFIG-SMES," Energies, MDPI, vol. 6(8), pages 1-21, August.
    16. Hak-Man Kim & Yujin Lim & Tetsuo Kinoshita, 2012. "An Intelligent Multiagent System for Autonomous Microgrid Operation," Energies, MDPI, vol. 5(9), pages 1-16, September.
    17. Jong-Yul Kim & Hak-Man Kim & Seul-Ki Kim & Jin-Hong Jeon & Heung-Kwan Choi, 2011. "Designing an Energy Storage System Fuzzy PID Controller for Microgrid Islanded Operation," Energies, MDPI, vol. 4(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emin Karagözoğlu, 2014. "A noncooperative approach to bankruptcy problems with an endogenous estate," Annals of Operations Research, Springer, vol. 217(1), pages 299-318, June.
    2. Erlanson, Albin & Szwagrzak, Karol, 2013. "Strategy-Proof Package Assignment," Working Papers 2013:43, Lund University, Department of Economics.
    3. Peter Knudsen & Lars Østerdal, 2012. "Merging and splitting in cooperative games: some (im)possibility results," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 763-774, November.
    4. Cano Berlanga, Sebastian & Giménez Gómez, José M. (José Manuel) & Vilella Bach, Misericòrdia, 2015. "Enjoying cooperative games: The R package GameTheory," Working Papers 2072/247653, Universitat Rovira i Virgili, Department of Economics.
    5. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
    6. Wulf Gaertner & Richard Bradley & Yongsheng Xu & Lars Schwettmann, 2019. "Against the proportionality principle: Experimental findings on bargaining over losses," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.
    7. Erik Ansink & Hans-Peter Weikard, 2012. "Sequential sharing rules for river sharing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(2), pages 187-210, February.
    8. Jingyi Xue, 2018. "Fair division with uncertain needs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(1), pages 105-136, June.
    9. Bas Dietzenbacher & Yuki Tamura & William Thomson, 2024. "Partial-implementation invariance and claims problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 63(1), pages 203-229, August.
    10. Pálvölgyi, Dénes & Peters, Hans & Vermeulen, Dries, 2014. "A strategic approach to multiple estate division problems," Games and Economic Behavior, Elsevier, vol. 88(C), pages 135-152.
    11. Hendrickx, R.L.P. & Borm, P.E.M. & Elk, R. & Quant, M., 2005. "Minimal Overlap Rules for Bankruptcy," Other publications TiSEM 281932c0-26d6-4f02-a01f-7, Tilburg University, School of Economics and Management.
    12. Jens Leth Hougaard & Juan D. Moreno-Ternero & Lars Peter Østerdal, 2010. "Baseline Rationing," Discussion Papers 10-16, University of Copenhagen. Department of Economics.
    13. Quant, M. & Borm, P.E.M. & Maaten, R., 2005. "A Concede-and-Divide Rule for Bankruptcy Problems," Discussion Paper 2005-20, Tilburg University, Center for Economic Research.
    14. José-Manuel Giménez-Gómez & António Osório & Josep E. Peris, 2015. "From Bargaining Solutions to Claims Rules: A Proportional Approach," Games, MDPI, vol. 6(1), pages 1-7, March.
    15. Sanchez-Soriano, Joaquin, 2021. "Families of sequential priority rules and random arrival rules with withdrawal limits," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 136-148.
    16. Arantza Estévez-Fernández & Peter Borm & M. Gloria Fiestras-Janeiro, 2020. "Nontransferable utility bankruptcy games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 154-177, April.
    17. Peris, Josep E. & Jiménez-Gómez, José M., 2012. "A Proportional Approach to Bankruptcy Problems with a guaranteed minimum," QM&ET Working Papers 12-7, University of Alicante, D. Quantitative Methods and Economic Theory.
    18. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Østerdal, Lars Peter, 2012. "A unifying framework for the problem of adjudicating conflicting claims," Journal of Mathematical Economics, Elsevier, vol. 48(2), pages 107-114.
    19. Carlos González-Alcón & Peter Borm & Ruud Hendrickx, 2007. "A composite run-to-the-bank rule for multi-issue allocation situations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 339-352, April.
    20. William Thomson, 2011. "Consistency and its converse: an introduction," Review of Economic Design, Springer;Society for Economic Design, vol. 15(4), pages 257-291, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:12:p:1972-1990:d:10636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.