IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i9p1622-1638d9549.html
   My bibliography  Save this article

Hierarchical MAS Based Control Strategy for Microgrid

Author

Listed:
  • Zhe Xiao

    (School of Information Science and Engineering, Yunnan University, Kunming 650091, China
    School of Electrical & Electronic Engineering, Nanyang Technological University ,Western Catchment Area, 639798, Singapore)

  • Tinghua Li

    (School of Information Science and Engineering, Yunnan University, Kunming 650091, China)

  • Ming Huang

    (School of Information Science and Engineering, Yunnan University, Kunming 650091, China)

  • Jihong Shi

    (School of Information Science and Engineering, Yunnan University, Kunming 650091, China)

  • Jingjing Yang

    (School of Information Science and Engineering, Yunnan University, Kunming 650091, China)

  • Jiang Yu

    (School of Information Science and Engineering, Yunnan University, Kunming 650091, China)

  • Wei Wu

    (Communication Branch of Yunnan Power Grid Corporation, Kunming, Yunnan 650217, China)

Abstract

Microgrids have become a hot topic driven by the dual pressures of environmental protection concerns and the energy crisis. In this paper, a challenge for the distributed control of a modern electric grid incorporating clusters of residential microgrids is elaborated and a hierarchical multi-agent system (MAS) is proposed as a solution. The issues of how to realize the hierarchical MAS and how to improve coordination and control strategies are discussed. Based on MATLAB and ZEUS platforms, bilateral switching between grid-connected mode and island mode is performed under control of the proposed MAS to enhance and support its effectiveness.

Suggested Citation

  • Zhe Xiao & Tinghua Li & Ming Huang & Jihong Shi & Jingjing Yang & Jiang Yu & Wei Wu, 2010. "Hierarchical MAS Based Control Strategy for Microgrid," Energies, MDPI, vol. 3(9), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:9:p:1622-1638:d:9549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/9/1622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/9/1622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koesrinartoto, D. & Sun, Junjie & Tesfatsion, Leigh, 2005. "An agent-based computational laboratory for testing the economic reliability of wholesale power market designs," ISU General Staff Papers 200501010800001043, Iowa State University, Department of Economics.
    2. Lagorse, Jeremy & Paire, Damien & Miraoui, Abdellatif, 2010. "A multi-agent system for energy management of distributed power sources," Renewable Energy, Elsevier, vol. 35(1), pages 174-182.
    3. Link, Heike & Nilsson, Jan-Eric, 2005. "Infrastructure," Research in Transportation Economics, Elsevier, vol. 14(1), pages 49-83, January.
    4. Zamora, Ramon & Srivastava, Anurag K., 2010. "Controls for microgrids with storage: Review, challenges, and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2009-2018, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    2. Khan, Muhammad Waseem & Wang, Jie, 2017. "The research on multi-agent system for microgrid control and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1399-1411.
    3. Zhirong Xu & Ping Yang & Zhiji Zeng & Jiajun Peng & Zhuoli Zhao, 2016. "Black Start Strategy for PV-ESS Multi-Microgrids with Three-Phase/Single-Phase Architecture," Energies, MDPI, vol. 9(5), pages 1-14, May.
    4. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    5. Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Microgrid Energy Management System Based on Fuzzy Logic and Monitoring Platform for Data Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
    6. Hak-Man Kim & Tetsuo Kinoshita & Myong-Chul Shin, 2010. "A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment," Energies, MDPI, vol. 3(12), pages 1-19, December.
    7. Xi Wu & Ping Jiang & Jing Lu, 2014. "Multiagent-Based Distributed Load Shedding for Islanded Microgrids," Energies, MDPI, vol. 7(9), pages 1-13, September.
    8. Fatma Yaprakdal & M. Berkay Yılmaz & Mustafa Baysal & Amjad Anvari-Moghaddam, 2020. "A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    9. Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
    10. Abdul Conteh & Mohammed Elsayed Lotfy & Oludamilare Bode Adewuyi & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Demand Response Economic Assessment with the Integration of Renewable Energy for Developing Electricity Markets," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    11. Jorge J. Gomez-Sanz & Sandra Garcia-Rodriguez & Nuria Cuartero-Soler & Luis Hernandez-Callejo, 2014. "Reviewing Microgrids from a Multi-Agent Systems Perspective," Energies, MDPI, vol. 7(5), pages 1-28, May.
    12. Henan Dong & Shun Yuan & Zijiao Han & Zhiyuan Cai & Guangdong Jia & Yangyang Ge, 2018. "A Comprehensive Strategy for Accurate Reactive Power Distribution, Stability Improvement, and Harmonic Suppression of Multi-Inverter-Based Micro-Grid," Energies, MDPI, vol. 11(4), pages 1-16, March.
    13. Yujin Lim & Hak-Man Kim & Tetsuo Kinoshita, 2014. "Distributed Load-Shedding System for Agent-Based Autonomous Microgrid Operations," Energies, MDPI, vol. 7(1), pages 1-17, January.
    14. Mi Dong & Li Li & Lina Wang & Dongran Song & Zhangjie Liu & Xiaoyu Tian & Zhengguo Li & Yinghua Wang, 2018. "A Distributed Secondary Control Algorithm for Automatic Generation Control Considering EDP and Automatic Voltage Control in an AC Microgrid," Energies, MDPI, vol. 11(4), pages 1-18, April.
    15. Manbachi, Moein & Farhangi, Hassan & Palizban, Ali & Arzanpour, Siamak, 2016. "Smart grid adaptive energy conservation and optimization engine utilizing Particle Swarm Optimization and Fuzzification," Applied Energy, Elsevier, vol. 174(C), pages 69-79.
    16. Ying-Yi Hong & Jing-Han Chou, 2012. "Nonintrusive Energy Monitoring for Microgrids Using Hybrid Self-Organizing Feature-Mapping Networks," Energies, MDPI, vol. 5(7), pages 1-16, July.
    17. Hak-Man Kim & Yujin Lim & Tetsuo Kinoshita, 2012. "An Intelligent Multiagent System for Autonomous Microgrid Operation," Energies, MDPI, vol. 5(9), pages 1-16, September.
    18. Jing Wang & Longhua Mu & Fan Zhang & Xin Zhang, 2017. "A Parallel Restoration for Black Start of Microgrids Considering Characteristics of Distributed Generations," Energies, MDPI, vol. 11(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P. & Steffel, Steve & Dinkel, Alex, 2015. "Configurable, Hierarchical, Model-based, Scheduling Control with photovoltaic generators in power distribution circuits," Renewable Energy, Elsevier, vol. 76(C), pages 318-329.
    2. Link, Heike & Götze, Wolfgang & Himanen, Veli, 2009. "Estimating the marginal costs of airport operation using multivariate time series models with correlated error terms," Journal of Air Transport Management, Elsevier, vol. 15(1), pages 41-46.
    3. Marc Gaudry & Emile Quinet, 2015. "Correlation within SNCF administrative regions among track segment maintenance cost equation residuals of a country-wide model," Working Papers halshs-01112249, HAL.
    4. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    5. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    6. Meiling Ma & Zhiyuan Zhi & Dong Han & Yushan Fan, 2023. "Dynamic Modeling and Analysis of a Virtual Synchronous Generator with Supercapacitor," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
    7. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    8. Yu, Nan & Kang, Jin-Su & Chang, Chung-Chuan & Lee, Tai-Yong & Lee, Dong-Yup, 2016. "Robust economic optimization and environmental policy analysis for microgrid planning: An application to Taichung Industrial Park, Taiwan," Energy, Elsevier, vol. 113(C), pages 671-682.
    9. Brearley, Belwin J. & Prabu, R. Raja, 2017. "A review on issues and approaches for microgrid protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 988-997.
    10. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    11. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    12. Andersson, Mats & Björklund, Gunilla, 2012. "Marginal railway track renewal costs: a survival data approach," Working papers in Transport Economics 2012:29, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    13. Sun, Junjie & Tesfatsion, Leigh, 2006. "DC Optimal Power Flow Formulation and Solution Using QuadProgJ," Staff General Research Papers Archive 12558, Iowa State University, Department of Economics.
    14. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    15. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Cheol-Hee Yoo & Il-Yop Chung & Hak-Ju Lee & Sung-Soo Hong, 2013. "Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management," Energies, MDPI, vol. 6(10), pages 1-24, September.
    17. Furtado, Bernardo Alves & Eberhardt, Isaque Daniel Rocha, 2015. "Modelo espacial simples da economia: uma proposta teórico-metodológica [A simple spatial economic model: a proposal]," MPRA Paper 67005, University Library of Munich, Germany.
    18. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    19. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    20. Giorgio Fagiolo & Paul Windrum & Alessio Moneta, 2006. "Empirical Validation of Agent Based Models: A Critical Survey," LEM Papers Series 2006/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:9:p:1622-1638:d:9549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.