IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p5074-5089d50493.html
   My bibliography  Save this article

A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control

Author

Listed:
  • Thai-Thanh Nguyen

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea)

  • Hyeong-Jun Yoo

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea)

  • Hak-Man Kim

    (Department of Electrical Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea)

Abstract

Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.

Suggested Citation

  • Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2015. "A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control," Energies, MDPI, vol. 8(6), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5074-5089:d:50493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/5074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/5074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hak-Man Kim & Tetsuo Kinoshita & Myong-Chul Shin, 2010. "A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment," Energies, MDPI, vol. 3(12), pages 1-19, December.
    2. Sebastián, R. & Peña Alzola, R., 2012. "Flywheel energy storage systems: Review and simulation for an isolated wind power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6803-6813.
    3. Hak-Man Kim & Yujin Lim & Tetsuo Kinoshita, 2012. "An Intelligent Multiagent System for Autonomous Microgrid Operation," Energies, MDPI, vol. 5(9), pages 1-16, September.
    4. Wei Gu & Wei Liu & Zhi Wu & Bo Zhao & Wu Chen, 2013. "Cooperative Control to Enhance the Frequency Stability of Islanded Microgrids with DFIG-SMES," Energies, MDPI, vol. 6(8), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ladislas Mutunda Kangaji & Lagouge Tartibu & Pitshou N. Bokoro, 2023. "Modelling and Performance Analysis of a Tidal Current Turbine Connected to the Grid Using an Inductance (LCL) Filter," Energies, MDPI, vol. 16(16), pages 1-23, August.
    2. Deyou Yang & Jiaxin Wen & Ka-wing Chan & Guowei Cai, 2016. "Dispatching of Wind/Battery Energy Storage Hybrid Systems Using Inner Point Method-Based Model Predictive Control," Energies, MDPI, vol. 9(8), pages 1-16, August.
    3. Aya M. Moheb & Enas A. El-Hay & Attia A. El-Fergany, 2022. "Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids," Energies, MDPI, vol. 15(18), pages 1-30, September.
    4. Tiago Lukasievicz & Ricardo Oliveira & César Torrico, 2018. "A Control Approach and Supplementary Controllers for a Stand-Alone System with Predominance of Wind Generation," Energies, MDPI, vol. 11(2), pages 1-17, February.
    5. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    6. Andrzej Tomczewski & Leszek Kasprzyk & Zbigniew Nadolny, 2019. "Reduction of Power Production Costs in a Wind Power Plant–Flywheel Energy Storage System Arrangement," Energies, MDPI, vol. 12(10), pages 1-24, May.
    7. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    8. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2015. "Application of Model Predictive Control to BESS for Microgrid Control," Energies, MDPI, vol. 8(8), pages 1-16, August.
    9. Zanbin Wang & Chaoshun Li & Xinjie Lai & Nan Zhang & Yanhe Xu & Jinjiao Hou, 2018. "An Integrated Start-Up Method for Pumped Storage Units Based on a Novel Artificial Sheep Algorithm," Energies, MDPI, vol. 11(1), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Tse Kuo & Shiue-Der Lu, 2013. "Design and Implementation of Real-Time Intelligent Control and Structure Based on Multi-Agent Systems in Microgrids," Energies, MDPI, vol. 6(11), pages 1-15, November.
    2. Wei-Tzer Huang & Tsai-Hsiang Chen & Hong-Ting Chen & Jhih-Siang Yang & Kuo-Lung Lian & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2015. "A Two-stage Optimal Network Reconfiguration Approach for Minimizing Energy Loss of Distribution Networks Using Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 8(12), pages 1-17, December.
    3. Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2017. "Optimal Operation of Microgrids Considering Auto-Configuration Function Using Multiagent System," Energies, MDPI, vol. 10(10), pages 1-16, September.
    4. Xi Wu & Ping Jiang & Jing Lu, 2014. "Multiagent-Based Distributed Load Shedding for Islanded Microgrids," Energies, MDPI, vol. 7(9), pages 1-13, September.
    5. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    6. Ning Zhang & Wei Gu & Haojun Yu & Wei Liu, 2013. "Application of Coordinated SOFC and SMES Robust Control for Stabilizing Tie-Line Power," Energies, MDPI, vol. 6(4), pages 1-16, April.
    7. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim & Yong Hoon Im & Jae Yong Lee, 2015. "Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations," Energies, MDPI, vol. 8(8), pages 1-20, August.
    8. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim, 2016. "Optimal Electric and Heat Energy Management of Multi-Microgrids with Sequentially-Coordinated Operations," Energies, MDPI, vol. 9(6), pages 1-18, June.
    9. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    10. Tine L. Vandoorn & Jan Van de Vyver & Louis Gevaert & Lieven Degroote & Lieven Vandevelde, 2015. "Congestion Control Algorithm in Distribution Feeders: Integration in a Distribution Management System," Energies, MDPI, vol. 8(6), pages 1-20, June.
    11. Kumar, Lalit & Jain, Shailendra, 2014. "Electric propulsion system for electric vehicular technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 924-940.
    12. Rafael Sebastián & Antonio Nevado, 2020. "Study and Simulation of a Wind Hydro Isolated Microgrid," Energies, MDPI, vol. 13(22), pages 1-15, November.
    13. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2015. "Application of Model Predictive Control to BESS for Microgrid Control," Energies, MDPI, vol. 8(8), pages 1-16, August.
    14. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Haritza Camblong & Aitor Etxeberria & Juanjo Ugartemendia & Octavian Curea, 2014. "Gain Scheduling Control of an Islanded Microgrid Voltage," Energies, MDPI, vol. 7(7), pages 1-21, July.
    16. Tsuguhiro Takuno & Yutaro Kitamori & Ryo Takahashi & Takashi Hikihara, 2011. "AC Power Routing System in Home Based on Demand and Supply Utilizing Distributed Power Sources," Energies, MDPI, vol. 4(5), pages 1-10, April.
    17. Yao Liu & Xiaochao Hou & Xiaofeng Wang & Chao Lin & Josep M. Guerrero, 2016. "A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode," Energies, MDPI, vol. 9(8), pages 1-15, August.
    18. Il-Seok Choi & Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2018. "A Multi-Agent System-Based Approach for Optimal Operation of Building Microgrids with Rooftop Greenhouse," Energies, MDPI, vol. 11(7), pages 1-24, July.
    19. Anh-Duc Nguyen & Van-Hai Bui & Akhtar Hussain & Duc-Huy Nguyen & Hak-Man Kim, 2018. "Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System," Energies, MDPI, vol. 11(6), pages 1-18, June.
    20. Mousavi G, S.M. & Faraji, Faramarz & Majazi, Abbas & Al-Haddad, Kamal, 2017. "A comprehensive review of Flywheel Energy Storage System technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 477-490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5074-5089:d:50493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.