China’s Energy Stock Price Index Prediction Based on VECM–BiLSTM Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Urolagin, Siddhaling & Sharma, Nikhil & Datta, Tapan Kumar, 2021. "A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting," Energy, Elsevier, vol. 231(C).
- Inoue, Atsushi & Kilian, Lutz, 2022.
"Joint Bayesian inference about impulse responses in VAR models,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 457-476.
- Atsushi Inoue & Lutz Kilian, 2020. "Joint Bayesian Inference about Impulse Responses in VAR Models," Working Papers 2022, Federal Reserve Bank of Dallas.
- Inoue, Atsushi & Kilian, Lutz, 2020. "Joint Bayesian inference about impulse responses in VAR models," CFS Working Paper Series 650, Center for Financial Studies (CFS).
- Chiu, Fan-Ping & Hsu, Chia-Sheng & Ho, Alan & Chen, Chi-Chung, 2016. "Modeling the price relationships between crude oil, energy crops and biofuels," Energy, Elsevier, vol. 109(C), pages 845-857.
- Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
- Ashfaq, Saleha & Tang, Yong & Maqbool, Rashid, 2019. "Volatility spillover impact of world oil prices on leading Asian energy exporting and importing economies’ stock returns," Energy, Elsevier, vol. 188(C).
- Atems, Bebonchu & Mette, Jehu & Lin, Guoyu & Madraki, Golshan, 2023. "Estimating and forecasting the impact of nonrenewable energy prices on US renewable energy consumption," Energy Policy, Elsevier, vol. 173(C).
- Gong, Xu & Shi, Rong & Xu, Jun & Lin, Boqiang, 2021. "Analyzing spillover effects between carbon and fossil energy markets from a time-varying perspective," Applied Energy, Elsevier, vol. 285(C).
- Jia, Zhijie & Wen, Shiyan & Lin, Boqiang, 2021. "The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China," Applied Energy, Elsevier, vol. 302(C).
- Li, Jingpeng & Umar, Muhammad & Huo, Jiale, 2023. "The spillover effect between Chinese crude oil futures market and Chinese green energy stock market," Energy Economics, Elsevier, vol. 119(C).
- Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
- Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
- Zhang, Xiaoyu & Zhou, Jinlan & Du, Xiaodong, 2022. "Impact of oil price uncertainty shocks on China’s macro-economy," Resources Policy, Elsevier, vol. 79(C).
- Singh, Sanjeet & Bansal, Pooja & Hosen, Mosharrof & Bansal, Sanjeev K., 2023. "Forecasting annual natural gas consumption in USA: Application of machine learning techniques- ANN and SVM," Resources Policy, Elsevier, vol. 80(C).
- Chen, Zhan-Ming & Chen, Pei-Lin & Ma, Zeming & Xu, Shiyun & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Inflationary and distributional effects of fossil energy price fluctuation on the Chinese economy," Energy, Elsevier, vol. 187(C).
- Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin, 2017. "Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions," Energy Policy, Elsevier, vol. 105(C), pages 108-119.
- Fan, Dongyan & Sun, Hai & Yao, Jun & Zhang, Kai & Yan, Xia & Sun, Zhixue, 2021. "Well production forecasting based on ARIMA-LSTM model considering manual operations," Energy, Elsevier, vol. 220(C).
- Sadeghi, Abdorasoul & Roudari, Soheil, 2022. "Heterogeneous effects of oil structure and oil shocks on stock prices in different regimes: Evidence from oil-exporting and oil-importing countries," Resources Policy, Elsevier, vol. 76(C).
- Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
- de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
- Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
- Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
- Xiong, Xiaoping & Qing, Guohua, 2023. "A hybrid day-ahead electricity price forecasting framework based on time series," Energy, Elsevier, vol. 264(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Xunfa & Huang, Nan & Mo, Jianlei, 2024. "Time-varying causalities from the COVID-19 media coverage to the dynamic spillovers among the cryptocurrency, the clean energy, and the crude oil," Energy Economics, Elsevier, vol. 132(C).
- Li, Ye & Chen, Yiyan & Lean, Hooi Hooi, 2024. "Geopolitical risk and crude oil price predictability: Novel decomposition ensemble approach based ternary interval number series," Resources Policy, Elsevier, vol. 92(C).
- Jia, Zhijie & Lin, Boqiang, 2023. "Primary fossil energy cost and price regulation in energy processing sectors---the perspective of price regulation market with Chinese characteristics," Resources Policy, Elsevier, vol. 83(C).
- Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
- Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W., 2024. "Connectivity and spillover during crises: Highlighting the prominent and growing role of green energy," Energy Economics, Elsevier, vol. 129(C).
- Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
- Ouyang, Zisheng & Lu, Min & Ouyang, Zhongzhe & Zhou, Xuewei & Wang, Ren, 2024. "A novel integrated method for improving the forecasting accuracy of crude oil: ESMD-CFastICA-BiLSTM-Attention," Energy Economics, Elsevier, vol. 138(C).
- Linlin Zhao & Zhansheng Liu & Jasper Mbachu, 2019. "Energy Management through Cost Forecasting for Residential Buildings in New Zealand," Energies, MDPI, vol. 12(15), pages 1-24, July.
- Aliyon, Kasra & Ritvanen, Jouni, 2024. "Deep learning-based electricity price forecasting: Findings on price predictability and European electricity markets," Energy, Elsevier, vol. 308(C).
- Jining Wang & Renjie Zeng & Lei Wang, 2024. "Volatility Spillover Between the Carbon Market and Traditional Energy Market Using the DGC-t-MSV Model," Mathematics, MDPI, vol. 12(23), pages 1-15, November.
- Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
- Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
- Hu, Huanling & Wang, Lin & Peng, Lu & Zeng, Yu-Rong, 2020. "Effective energy consumption forecasting using enhanced bagged echo state network," Energy, Elsevier, vol. 193(C).
- Wu, Han & Liang, Yan & Gao, Xiao-Zhi & Du, Pei, 2024. "Auditory-circuit-motivated deep network with application to short-term electricity price forecasting," Energy, Elsevier, vol. 288(C).
- Scheben, Heike & Hufendiek, Kai, 2023. "Modelling power prices in markets with high shares of renewable energies and storages—The Norwegian example," Energy, Elsevier, vol. 267(C).
- Ji, Hao & Naeem, Muhammad & Zhang, Jing & Tiwari, Aviral Kumar, 2024. "Dynamic dependence and spillover among the energy related ETFs: From the hedging effectiveness perspective," Energy Economics, Elsevier, vol. 136(C).
- Lei, Heng & Xue, Minggao & Ye, Jing, 2024. "The nexus between ReFi, carbon, fossil energy, and clean energy assets: Quantile time–frequency connectedness and portfolio implications," Energy Economics, Elsevier, vol. 132(C).
- Su, Chi-Wei & Wang, Dan & Mirza, Nawazish & Zhong, Yifan & Umar, Muhammad, 2023. "The impact of consumer confidence on oil prices," Energy Economics, Elsevier, vol. 124(C).
- Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
- Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
More about this item
Keywords
China’s energy market; VECM–BiLSTM; spillover analysis; energy stock price index prediction; sustainable energy market;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1242-:d:1604619. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.