IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p934-d1592003.html
   My bibliography  Save this article

Investigation of Water-in-Diesel Emulsion Behavior Formulated for Performance Conditions in a Single-Cylinder Diesel Engine

Author

Listed:
  • Pedro Oliveira

    (Centre for Mechanical and Aerospace Sciences and Technologies (C-MAST), University of Beira Interior, 6200-358 Covilhã, Portugal)

  • Francisco Brójo

    (Department of Aerospace Sciences, University of Beira Interior, 6200-358 Covilhã, Portugal)

  • Rogério Serôdio

    (Department of Mathematics, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • João Serôdio

    (Energy Safety Research Institute, Swansea University, Swansea SA1 8EN, UK)

Abstract

The search for alternative fuels is driven by increasing environmental and health concerns across the globe. Water-in-diesel emulsions (WiDEs) have been explored over the years as a potential fuel for diesel engines to mitigate emissions of greenhouse gases, especially nitrogen oxides and smoke. Researchers have been developing and testing different formulations of emulsified fuels with the common goal of stabilizing the mixture and minimizing pollutant emissions without significantly compromising engine performance. In this work, a novel approach is taken by developing a hydrophilic emulsion formulation optimized for engine operating temperatures, overcoming the storage-related stability issues that most studies focus on. Two different mixtures of WiDE were heated and supplied to a Hatz 1B40 single-cylinder diesel engine. The engine was coupled to an eddy current dynamometer to measure speed, torque, and power values. Emissions of carbon monoxide (CO), carbon dioxide (CO 2 ), hydrocarbons (HCs), nitric oxide (NO), and oxygen (O 2 ) were measured by an AVL DiGas 1000 exhaust gas analyzer. Smoke emissions were measured by an AVL DiSmoke 480. This study represents a contribution to the field of alternative fuels for diesel engines by providing experimental evidence that formulating WiDE for operating temperatures can be advantageous and significantly improve thermal efficiency and reduce emissions of NO and smoke at specific engine operating conditions, with a maximum reduction of 46.86% for NO emissions and a maximum reduction of 83.67% for smoke emissions obtained when compared to diesel.

Suggested Citation

  • Pedro Oliveira & Francisco Brójo & Rogério Serôdio & João Serôdio, 2025. "Investigation of Water-in-Diesel Emulsion Behavior Formulated for Performance Conditions in a Single-Cylinder Diesel Engine," Energies, MDPI, vol. 18(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:934-:d:1592003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/934/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/934/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gowrishankar, Sudarshan & Krishnasamy, Anand, 2023. "Emulsification – A promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine," Energy, Elsevier, vol. 263(PC).
    2. Vellaiyan, Suresh, 2023. "Recent advancements in water emulsion fuel to explore efficient and cleaner production from various biodiesels: A retrospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Mohd Tamam, Mohamad Qayyum & Yahya, Wira Jazair & Ithnin, Ahmad Muhsin & Abdullah, Nik Rosli & Kadir, Hasannuddin Abdul & Rahman, Md Mujibur & Rahman, Hasbullah Abdul & Abu Mansor, Mohd Radzi & Noge, , 2023. "Performance and emission studies of a common rail turbocharged diesel electric generator fueled with emulsifier free water/diesel emulsion," Energy, Elsevier, vol. 268(C).
    4. Liu, Wenlong & Gao, Ying & You, Yuelin & Jiang, Changwen & Hua, Taoyi & Xia, Bocong, 2024. "Nonlinear model predictive control(NMPC) of diesel oxidation catalyst (DOC) outlet temperature for active regeneration of diesel particulate filter (DPF) in diesel engine," Energy, Elsevier, vol. 293(C).
    5. Kumar, Atul & Chen, Hsien-Wen & Yang, Shouyin, 2023. "Modeling microexplosion mechanism in droplet combustion: Puffing and droplet breakup," Energy, Elsevier, vol. 266(C).
    6. Kim, Keunsoo & Lee, Wooyoung & Wiersema, Paxton & Mayhew, Eric & Temme, Jacob & Kweon, Chol-Bum M. & Lee, Tonghun, 2023. "Effects of the cetane number on chemical ignition delay," Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balla M. Ahmed & Maji Luo & Hassan A. M. Elbadawi & Nasreldin M. Mahmoud & Pang-Chieh Sui, 2024. "Experimental Study of 2-Ethylhexyl Nitrate Effects on Engine Performance and Exhaust Emissions of Diesel Engine Fueled with Diesel–2-Methylfuran Blends," Energies, MDPI, vol. 18(1), pages 1-16, December.
    2. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    3. Vellaiyan, Suresh, 2023. "Recent advancements in water emulsion fuel to explore efficient and cleaner production from various biodiesels: A retrospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Wang, Yuhua & Li, Jinlong & Wang, Guiyong & Chen, Guisheng & He, Shuchao, 2025. "Prediction of diesel particulate filter regeneration conditions and diesel engine performance under regeneration mode using AMSO-BPNN and combined with XGBoost," Applied Energy, Elsevier, vol. 377(PA).
    5. Pedro Oliveira & Francisco Brójo, 2024. "An Experimental Study on the Performance and Emissions of an 8% Water-in-Diesel Emulsion Stabilized by a Hydrophilic Surfactant Blend," Energies, MDPI, vol. 17(6), pages 1-16, March.
    6. Michal Borecki & Mateusz Geca & Li Zan & Przemysław Prus & Michael L. Korwin-Pawlowski, 2024. "Multiparametric Methods for Rapid Classification of Diesel Fuel Quality Used in Automotive Engine Systems," Energies, MDPI, vol. 17(16), pages 1-42, August.
    7. Victoria Kornienko & Mykola Radchenko & Andrii Radchenko & Hanna Koshlak & Roman Radchenko, 2023. "Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:934-:d:1592003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.