IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p827-d1588250.html
   My bibliography  Save this article

Preparation and Characterization of Ru-Based Catalyst for Power to Gas Applications

Author

Listed:
  • Leonardo Colelli

    (Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Alberto Grancini

    (BASF—Catalysts Division, Via di Salone, 245, 00131 Rome, Italy)

  • Enrico Mattei

    (BASF—Catalysts Division, Via di Salone, 245, 00131 Rome, Italy)

  • Claudia Bassano

    (ENEA—Italian Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy)

  • Giorgio Vilardi

    (Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

Heterogeneous catalysis plays a crucial role in various industrial processes, representing a key aspect also in the energy transition for the development of new technologies. Among them, Power to Gas (PtG), belonging to the e-fuels category, requires a deep study of catalysis to convert CO 2 and green hydrogen coming from the water electrolysis with renewable power into synthetic methane, contributing to carbon-neutral goals and net-zero emission targets. In this context, the preparation and characterization of Ru-based catalyst on alumina support are carried out through a patented experimental procedure to evaluate performance parameters for PtG applications. Two main preparations are performed to assess the differences of the final product, which is a 0.5 wt% Ru on 1/8” alumina sphere support in the dry form. In the first case, a laboratory-scale production is carried out to produce 300 g of catalyst (Batch 1), while in the second one, the preparation is brought to 3 kg of catalyst (Batch 2) by using a pilot plant. In both cases, wet impregnation technique is used to prepare the Ru-based catalyst. Beyond the production, analytical tests are performed to evaluate the main features of the product and ascertain the differences between the two productions.

Suggested Citation

  • Leonardo Colelli & Alberto Grancini & Enrico Mattei & Claudia Bassano & Giorgio Vilardi, 2025. "Preparation and Characterization of Ru-Based Catalyst for Power to Gas Applications," Energies, MDPI, vol. 18(4), pages 1-32, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:827-:d:1588250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seleshi G. Yalew & Michelle T. H. van Vliet & David E. H. J. Gernaat & Fulco Ludwig & Ariel Miara & Chan Park & Edward Byers & Enrica De Cian & Franziska Piontek & Gokul Iyer & Ioanna Mouratiadou & Ja, 2020. "Impacts of climate change on energy systems in global and regional scenarios," Nature Energy, Nature, vol. 5(10), pages 794-802, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    4. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    6. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    8. Guangsheng Pan & Qinran Hu & Wei Gu & Shixing Ding & Haifeng Qiu & Yuping Lu, 2021. "Assessment of plum rain’s impact on power system emissions in Yangtze-Huaihe River basin of China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    11. Su, Yuqi & Tian, Gary Gang & Li, Hai-Chao & Ding, Chante Jian, 2024. "Climate risk and corporate energy strategies: Unveiling the Inverted-N relationship," Energy, Elsevier, vol. 310(C).
    12. Oyewo, Ayobami S. & Aghahosseini, Arman & Movsessian, Maria M. & Breyer, Christian, 2024. "A novel geothermal-PV led energy system analysis on the case of the central American countries Guatemala, Honduras, and Costa Rica," Renewable Energy, Elsevier, vol. 221(C).
    13. Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).
    14. Boyce, Scott & He, Fangliang, 2022. "Political governance, socioeconomics, and weather influence provincial GHG emissions in Canada," Energy Policy, Elsevier, vol. 168(C).
    15. Abel, Dennis & Lieth, Jonas & Jünger, Stefan, 2024. "Mapping the spatial turn in social science energy research. A computational literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    16. Pezalla, Simon & Obringer, Renee, 2023. "Evaluating the household-level climate-electricity nexus across three cities through statistical learning techniques," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    17. Fortes, Patrícia & Simoes, Sofia G. & Amorim, Filipa & Siggini, Gildas & Sessa, Valentina & Saint-Drenan, Yves-Marie & Carvalho, Sílvia & Mujtaba, Babar & Diogo, Paulo & Assoumou, Edi, 2022. "How sensitive is a carbon-neutral power sector to climate change? The interplay between hydro, solar and wind for Portugal," Energy, Elsevier, vol. 239(PB).
    18. Mao, Ding & Wang, Peng & Fang, Yi-Ping & Ni, Long, 2024. "Securing heat-supply against seismic risks: A two-staged framework for assessing vulnerability and economic impacts in district heating networks," Applied Energy, Elsevier, vol. 369(C).
    19. Dongsheng Zheng & Dan Tong & Steven J. Davis & Yue Qin & Yang Liu & Ruochong Xu & Jin Yang & Xizhe Yan & Guannan Geng & Huizheng Che & Qiang Zhang, 2024. "Climate change impacts on the extreme power shortage events of wind-solar supply systems worldwide during 1980–2022," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Laibao Liu & Gang He & Mengxi Wu & Gang Liu & Haoran Zhang & Ying Chen & Jiashu Shen & Shuangcheng Li, 2023. "Climate change impacts on planned supply–demand match in global wind and solar energy systems," Nature Energy, Nature, vol. 8(8), pages 870-880, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:827-:d:1588250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.