IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924024188.html
   My bibliography  Save this article

Real-time hosting capacity assessment for electric vehicles: A sequential forecast-then-optimize method

Author

Listed:
  • Zhuang, Yingrui
  • Cheng, Lin
  • Qi, Ning
  • Wang, Xinyi
  • Chen, Yue

Abstract

Hosting capacity (HC) assessment for electric vehicles (EVs) is crucial for EV secure integration and reliable power system operation. Existing methods primarily focus on a long-term perspective (e.g., system planning), and consider the EV charging demands as scalar values, which introduces inaccuracies in real-time operations due to the inherently stochastic nature of EVs. In this regard, this paper proposes a real-time HC assessment method for EVs through a three-step process, involving real-time probabilistic forecasting, risk analysis and probabilistic optimization. Specifically, we conduct real-time probabilistic forecasting to capture the stochastic nature of EV charging demands across multiple charging stations by performing deterministic forecasting and fitting the distribution of forecasting errors. The deterministic forecasting is conducted using an adaptive spatio-temporal graph convolutional network (ASTGCN). ASTGCN leverages adaptive spatial feature extraction, attention-based temporal feature extraction, and second-order graph representation to improve the forecasting performance. Subsequently, based on the probabilistic forecasting of EV charging demands, we conduct real-time risk analysis and operational boundary identification by utilizing probabilistic power flow calculations to assess potential violations of secure operational constraints. Furthermore, we present the formulation of real-time HC of EVs considering expected satisfaction of stochastic EV charging demands, and propose an optimization model for real-time HC assessment of EVs. Numerical experiments on a real-world dataset demonstrate that the proposed ASTGCN model outperforms state-of-the-art forecasting models by achieving the lowest root mean square error of 0.0442, and the real-time HC is improved by 64% compared to long-term HC assessment.

Suggested Citation

  • Zhuang, Yingrui & Cheng, Lin & Qi, Ning & Wang, Xinyi & Chen, Yue, 2025. "Real-time hosting capacity assessment for electric vehicles: A sequential forecast-then-optimize method," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024188
    DOI: 10.1016/j.apenergy.2024.125034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924024188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.