IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p556-d1576640.html
   My bibliography  Save this article

Power Quality Improvement with Three-Phase Shunt Active Power Filter Prototype Based on Harmonic Component Separation Method with Low-Pass Filter

Author

Listed:
  • Marian Gaiceanu

    (Faculty of Automation, Computers, Electrical Engineering and Electronics, Dunarea de Jos University of Galati, 800008 Galati, Romania)

  • Silviu Epure

    (Faculty of Automation, Computers, Electrical Engineering and Electronics, Dunarea de Jos University of Galati, 800008 Galati, Romania)

  • Razvan Constantin Solea

    (Faculty of Automation, Computers, Electrical Engineering and Electronics, Dunarea de Jos University of Galati, 800008 Galati, Romania)

  • Razvan Buhosu

    (Faculty of Automation, Computers, Electrical Engineering and Electronics, Dunarea de Jos University of Galati, 800008 Galati, Romania)

Abstract

This work contributes to both Romania’s and the European Union’s energy policies by highlighting the research results obtained within the Dunarea de Jos University of Galati, but also through the technological transfer of this knowledge to the industry. In order to improve the power quality of the nonlinear loads connected to the electrical grid, a three-phase shunt active power filter prototype based on the Harmonic Component Separation Method with a Low-Pass Filter was used. The active power filter is connected at the Point of Common Coupling to compensate for individual loads or even all of them simultaneously. Therefore, active power filters can be used to compensate for the power factor and reduce the harmonic distortion of power supplies, or for processes subsequently connected to additional nonlinear loads, thus improving the energy efficiency. The shunt active power filter prototype is composed of the power side (three-phase insulated gate bipolar transistor bridge, DC link capacitor precharge system, inductive filter) and the control side (gate drive circuits, control subsystems, signal acquisition system). The filter control strategy is based on the principle of separating harmonic components with a low-pass filter, implemented by the authors on the industrial prototype. In this paper, the main technical features of the industrial shunt active power filter prototype are specified. The authors of this paper involved three cascaded control loops: the DC link voltage control loop, the shunt active power filter current control loop and the phase-locked loop. Both simulation and experimental results for the shunt-type active power filter prototype were obtained. By analyzing the obtained waveforms of the power supply source in two cases (with and without an active power filter), a decrease in the total harmonic distortion was demonstrated, both the voltage harmonic distortion factor THDu and the current harmonic distortion factor THDi in the case of the active power filter connection. By using the Field-Programmed Gate Array processing platform, the powerful computational speed features were exploited to implement the active shunt power filter control on an experimental test bench. Conducting source current harmonics mitigation increased the efficiency of the power system by decreasing the respective harmonic Joule losses. The energy-saving feature led to the increased added value of the parallel active power filter. Through the performed laboratory tests, the authors demonstrated the feasibility of the proposed control solution for the industrial prototype. In accordance with the European Union’s Research and Technological Development Policy, the development of an innovation ecosystem was taken into consideration. The unified and efficient integration of all the specific actors (enterprises, research institutes, universities and entrepreneurs) in innovation was achieved.

Suggested Citation

  • Marian Gaiceanu & Silviu Epure & Razvan Constantin Solea & Razvan Buhosu, 2025. "Power Quality Improvement with Three-Phase Shunt Active Power Filter Prototype Based on Harmonic Component Separation Method with Low-Pass Filter," Energies, MDPI, vol. 18(3), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:556-:d:1576640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/556/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/556/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinfeng Han & Bing Feng & Zejun Chen & Zhili Liang & Yuran Chen & Xuemin Liang, 2024. "Simulation and Application of a New Type of Energy-Saving Steel Claw for Aluminum Electrolysis Cells," Sustainability, MDPI, vol. 16(18), pages 1-15, September.
    2. Haochen Xu & Niaona Zhang & Zonghao Li & Zichang Zhuo & Ye Zhang & Yilei Zhang & Haitao Ding, 2023. "Energy-Saving Speed Planning for Electric Vehicles Based on RHRL in Car following Scenarios," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    3. Danieli Veronezi & Marcel Soulier & Tímea Kocsis, 2024. "Energy Solutions for Decarbonization of Industrial Heat Processes," Energies, MDPI, vol. 17(22), pages 1-23, November.
    4. Xinxing Liu & Xinheng Liu & Lei Li & Rong Xu & Qi Ban & Rui Xu, 2024. "Has Trade Liberalization Promoted Energy Efficiency in Enterprises?," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    5. Yellapragada Venkata Pavan Kumar & Sivakavi Naga Venkata Bramareswara Rao & Kottala Padma & Challa Pradeep Reddy & Darsy John Pradeep & Aymen Flah & Habib Kraiem & Michał Jasiński & Srete Nikolovski, 2022. "Fuzzy Hysteresis Current Controller for Power Quality Enhancement in Renewable Energy Integrated Clusters," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    6. Thiyagarajan Rameshkumar & Perumal Chandrasekar & Raju Kannadasan & Venkatraman Thiyagarajan & Mohammed H. Alsharif & James Hyungkwan Kim, 2022. "Electrical and Mechanical Characteristics Assessment of Wind Turbine System Employing Acoustic Sensors and Matrix Converter," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    7. Sivakavi Naga Venkata Bramareswara Rao & Yellapragada Venkata Pavan Kumar & Darsy John Pradeep & Challa Pradeep Reddy & Aymen Flah & Habib Kraiem & Jawad F. Al-Asad, 2022. "Power Quality Improvement in Renewable-Energy-Based Microgrid Clusters Using Fuzzy Space Vector PWM Controlled Inverter," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    8. Antonio Josip Šolić & Damir Jakus & Josip Vasilj & Danijel Jolevski, 2023. "Electric Vehicle Charging Station Power Supply Optimization with V2X Capabilities Based on Mixed-Integer Linear Programming," Sustainability, MDPI, vol. 15(22), pages 1-33, November.
    9. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    10. Mamdouh L. Alghaythi & Gerald Christopher Raj Irudayaraj & Senthil Kumar Ramu & Praveenraj Govindaraj & Indragandhi Vairavasundaram, 2023. "Mathematical Modeling and Analysis of Capacitor Voltage Balancing for Power Converters with Fewer Switches," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gogulamudi Pradeep Reddy & Yellapragada Venkata Pavan Kumar & Maddikera Kalyan Chakravarthi & Aymen Flah, 2022. "Refined Network Topology for Improved Reliability and Enhanced Dijkstra Algorithm for Optimal Path Selection during Link Failures in Cluster Microgrids," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    2. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    3. Mingang Tan & Chaohai Zhang & Bin Chen, 2022. "Size Estimation of Bulk Capacitor Removal Using Limited Power Quality Monitors in the Distribution Network," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    4. Vaclovas Miskinis & Arvydas Galinis & Inga Konstantinaviciute & Viktorija Bobinaite & Jarek Niewierowicz & Eimantas Neniskis & Egidijus Norvaisa & Dalius Tarvydas, 2025. "Key Determinants of Energy Intensity and Greenhouse Gas Emission Savings in Commercial and Public Services in the Baltic States," Energies, MDPI, vol. 18(3), pages 1-26, February.
    5. Sivakavi Naga Venkata Bramareswara Rao & Venkata Pavan Kumar Yellapragada & Kottala Padma & Darsy John Pradeep & Challa Pradeep Reddy & Mohammad Amir & Shady S. Refaat, 2022. "Day-Ahead Load Demand Forecasting in Urban Community Cluster Microgrids Using Machine Learning Methods," Energies, MDPI, vol. 15(17), pages 1-25, August.
    6. Yellapragada Venkata Pavan Kumar & Sivakavi Naga Venkata Bramareswara Rao & Kottala Padma & Challa Pradeep Reddy & Darsy John Pradeep & Aymen Flah & Habib Kraiem & Michał Jasiński & Srete Nikolovski, 2022. "Fuzzy Hysteresis Current Controller for Power Quality Enhancement in Renewable Energy Integrated Clusters," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    7. Purna Prakash Kasaraneni & Venkata Pavan Kumar Yellapragada & Ganesh Lakshmana Kumar Moganti & Aymen Flah, 2022. "Analytical Enumeration of Redundant Data Anomalies in Energy Consumption Readings of Smart Buildings with a Case Study of Darmstadt Smart City in Germany," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    8. Khaled Chahine & Mohamad Tarnini & Nazih Moubayed & Abdallah El Ghaly, 2023. "Power Quality Enhancement of Grid-Connected Renewable Systems Using a Matrix-Pencil-Based Active Power Filter," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    9. Yan Yang & Yeqin Wang & Weixing Zhang & Zhenghao Li & Rui Liang, 2022. "Design of Adaptive Fuzzy Sliding-Mode Control for High-Performance Islanded Inverter in Micro-Grid," Energies, MDPI, vol. 15(23), pages 1-25, December.
    10. Sami M. Alshareef & Ahmed Fathy, 2023. "Efficient Red Kite Optimization Algorithm for Integrating the Renewable Sources and Electric Vehicle Fast Charging Stations in Radial Distribution Networks," Mathematics, MDPI, vol. 11(15), pages 1-30, July.
    11. Samuel Moveh & Emmanuel Alejandro Merchán-Cruz & Ahmed Osman Ibrahim & Zeinab Abdallah Mohammed Elhassan & Nada Mohamed Ramadan Abdelhai & Mona Dafalla Abdelrazig, 2025. "Thermodynamic Optimization of Building HVAC Systems Through Dynamic Modeling and Advanced Machine Learning," Sustainability, MDPI, vol. 17(5), pages 1-28, February.
    12. Min Zhang & Huiqiang Zhi & Shifeng Zhang & Rui Fan & Ran Li & Jinhao Wang, 2022. "Modeling of Non-Characteristic Third Harmonics Produced by Voltage Source Converter under Unbalanced Condition," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
    13. Claudia Violeta Pop & Daniel Fodorean & Dan-Cristian Popa, 2022. "Structural Analysis of an In-Wheel Motor with Integrated Magnetic Gear Designed for Automotive Applications," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    14. Kanchana Kadirvel & Raju Kannadasan & Mohammed H. Alsharif & Zong Woo Geem, 2023. "Design and Modeling of Modified Interleaved Phase-Shifted Semi-Bridgeless Boost Converter for EV Battery Charging Applications," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    15. Ionescu, Romeo-Victor & Zlati, Monica Laura & Antohi, Valentin-Marian & Susanu, Irina Olimpia & Cristache, Nicoleta, 2022. "A new approach on renewable energy as a support for regional economic development among the European Union," Technological Forecasting and Social Change, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:556-:d:1576640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.