IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p479-d1573105.html
   My bibliography  Save this article

Robust Co-Optimization of Medium- and Short-Term Electrical Energy and Flexibility in Electricity Clusters

Author

Listed:
  • Mariusz Kaleta

    (Institute of Control and Computation Engineering, Warsaw University of Technology, 00-665 Warszawa, Poland)

Abstract

The increasing penetration of distributed renewable energy sources introduces challenges in maintaining balance within power systems. Civic energy initiatives offer a promising solution by decentralizing balancing responsibilities to local areas, with energy clusters serving as an example of such communities. This article proposes a novel mixed-integer linear programming (MILP) model for optimizing the energy mix within a cluster, addressing both planned balancing (day-ahead) and unplanned real-time adjustments. The proposed approach focuses on mid-term decision-making, including the integration of additional wind energy sources into the cluster and the procurement of new demand-side response (DSR) contracts, that allow for short-term planned and unplanned balancing. While increased wind energy enhances the system’s renewable capacity, it also raises operational stiffness, whereas DSR contracts provide the flexibility necessary for effective system balancing. The model incorporates risk aversion by employing Conditional Value at Risk (CVaR) as a risk measure, enabling a nuanced evaluation of trade-offs between cost and risk. The interactive framework allows decision-makers to tailor solutions by adjusting confidence levels and assigning weights to cost and risk metrics. A representative numerical example, based on a typical energy cluster in Poland, illustrates the model’s applicability. This case study demonstrates that the model responds intuitively to varying decision-maker preferences and can be efficiently solved for practical problem sizes.

Suggested Citation

  • Mariusz Kaleta, 2025. "Robust Co-Optimization of Medium- and Short-Term Electrical Energy and Flexibility in Electricity Clusters," Energies, MDPI, vol. 18(3), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:479-:d:1573105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariusz Kaleta & Włodzimierz Ogryczak & Eugeniusz Toczyłowski & Izabela Żółtowska, 2003. "On Multiple Criteria Decision Support for Suppliers on the Competitive Electric Power Market," Annals of Operations Research, Springer, vol. 121(1), pages 79-104, July.
    2. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    3. Michael Porter, 2003. "The Economic Performance of Regions," Regional Studies, Taylor & Francis Journals, vol. 37(6-7), pages 549-578.
    4. Maksym Koltunov & Simon Pezzutto & Adriano Bisello & Georg Lettner & Albert Hiesl & Wilfried van Sark & Atse Louwen & Eric Wilczynski, 2023. "Mapping of Energy Communities in Europe: Status Quo and Review of Existing Classifications," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    5. Skoczkowski, Tadeusz & Bielecki, Sławomir & Wołowicz, Marcin & Sobczak, Lidia & Węglarz, Arkadiusz & Gilewski, Paweł, 2024. "Participation in demand side response. Are individual energy users interested in this?," Renewable Energy, Elsevier, vol. 232(C).
    6. Pisciella, P. & Vespucci, M.T. & Bertocchi, M. & Zigrino, S., 2016. "A time consistent risk averse three-stage stochastic mixed integer optimization model for power generation capacity expansion," Energy Economics, Elsevier, vol. 53(C), pages 203-211.
    7. Nenad Jovanović & Javier García-González & Santiago Cerisola & Julián Barquín, 2018. "Impact of Risk Aversion on the Operation of Hydroelectric Reservoirs in the Presence of Renewable Energy Sources," Energies, MDPI, vol. 11(6), pages 1-20, May.
    8. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    9. Samsatli, Sheila & Samsatli, Nouri J., 2018. "A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies," Applied Energy, Elsevier, vol. 220(C), pages 893-920.
    10. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    11. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    12. Ahmed T. Hachemi & Fares Sadaoui & Abdelhakim Saim & Mohamed Ebeed & Hossam E. A. Abbou & Salem Arif, 2023. "Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response," Sustainability, MDPI, vol. 15(24), pages 1-32, December.
    13. Vahidinasab, Vahid, 2014. "Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design," Renewable Energy, Elsevier, vol. 66(C), pages 354-363.
    14. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2014. "Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs," Applied Energy, Elsevier, vol. 136(C), pages 393-404.
    15. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    16. Wene, Clas-Otto & Ryden, Bo, 1988. "A comprehensive energy model in the municipal energy planning process," European Journal of Operational Research, Elsevier, vol. 33(2), pages 212-222, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    2. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    3. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    4. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    5. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    6. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    7. Jin, S.W. & Li, Y.P. & Huang, G.H. & Nie, S., 2018. "Analyzing the performance of clean development mechanism for electric power systems under uncertain environment," Renewable Energy, Elsevier, vol. 123(C), pages 382-397.
    8. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    9. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
    10. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    11. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    12. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    13. Liu, Y. & Huang, G.H. & Cai, Y.P. & Cheng, G.H. & Niu, Y.T. & An, K., 2009. "Development of an inexact optimization model for coupled coal and power management in North China," Energy Policy, Elsevier, vol. 37(11), pages 4345-4363, November.
    14. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    15. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Li, Wei & Cheng, Guanhui, 2014. "Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: A case study for the City of Beijing," Energy Economics, Elsevier, vol. 46(C), pages 375-394.
    16. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    17. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    18. Tolis, Athanasios & Doukelis, Aggelos & Tatsiopoulos, Ilias, 2010. "Stochastic interest rates in the analysis of energy investments: Implications on economic performance and sustainability," Applied Energy, Elsevier, vol. 87(8), pages 2479-2490, August.
    19. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    20. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:479-:d:1573105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.