IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p452-d1572108.html
   My bibliography  Save this article

A Portable Hybrid Photovoltaic Thermal Application: Shape-Stabilised Phase-Change Material with Metal Flakes for Enhanced Heat Transfer

Author

Listed:
  • Pakin Maneechot

    (Department of Energy, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand)

  • Nivadee Klungsida

    (Department of Energy, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand)

  • Thep Kueathaweekun

    (Department of Energy, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand)

  • Narut Butploy

    (Department of Computer Technology, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand)

  • Sawet Somnugpong

    (Department of Computer Technology, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand)

  • Kanokwan Khiewwan

    (Department of Computer Technology, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand)

  • Jaturong Thongchai

    (Department of Computer Technology, Faculty of Industrial Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand)

  • Khumphicha Tantisantisom

    (Department of Information Technology, Faculty of Science and Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, Thailand)

  • Tholkappiyan Ramachandran

    (Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
    Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore 641062, India)

  • Madhan Kuppusamy

    (Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602105, India
    GOONWORLD Corporate Research Institute, Daegu 11051, Republic of Korea)

  • Karthikeyan Velmurugan

    (Smart Energy System Integration Research Unit, Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
    Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand)

Abstract

Photovoltaic–thermal (PVT) applications have been widely studied in recent years, though commercialisation has become critical due to their operational characteristics and size. In this study, a portable PVT system was developed for mobilisation with assistance from an organic phase-change material (PCM). Two different PCM composites were developed using the PCM with charcoal (PCM + C) and charcoal and metal flakes (PCM + C + M). Considering the portability of the PVT system, conventional metal-container-based PCM storage units were avoided, and the shape-stabilised PCMs (SS-PCMs) were fitted directly on the back surface of the PV module. Further, a serpentine copper tube was placed on the SS-PCMs to extract heat energy for hot water applications. It was found that PV PCM+C+M exhibited a higher cooling rate, with peak reductions of 24.82 °C and 4.19 °C compared to the PV noPCM and PV PCM+C , respectively. However, PV PCM+C exhibited a higher outlet water temperature difference of 11.62 °C. Secondly, an increase of more than 0.2 litres per minute showed a declining trend in cooling in the PV module. Considering the primary concern of electrical power generation, it was concluded that PV PCM+C+M is suitable for PVT mobilisation applications, owing to it having shown the highest thermal cooling per 190 g of PCM and a 1-Watt (TCPW) cooling effect of 2.482 °C. In comparison, PV PCM+C achieved a TCPW cooling effect of 1.399 °C.

Suggested Citation

  • Pakin Maneechot & Nivadee Klungsida & Thep Kueathaweekun & Narut Butploy & Sawet Somnugpong & Kanokwan Khiewwan & Jaturong Thongchai & Khumphicha Tantisantisom & Tholkappiyan Ramachandran & Madhan Kup, 2025. "A Portable Hybrid Photovoltaic Thermal Application: Shape-Stabilised Phase-Change Material with Metal Flakes for Enhanced Heat Transfer," Energies, MDPI, vol. 18(3), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:452-:d:1572108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su Wutyi Hnin & Amna Javed & Jessada Karnjana & Chawalit Jeenanunta & Youji Kohda, 2024. "Sustainable Energy Practices in Thailand and Japan: A Comparative Analysis," Sustainability, MDPI, vol. 16(16), pages 1-16, August.
    2. Modjinou, Mawufemo & Ji, Jie & Yuan, Weiqi & Zhou, Fan & Holliday, Sarah & Waqas, Adeel & Zhao, Xudong, 2019. "Performance comparison of encapsulated PCM PV/T, microchannel heat pipe PV/T and conventional PV/T systems," Energy, Elsevier, vol. 166(C), pages 1249-1266.
    3. Fu, Zaiguo & Liang, Xiaotian & Li, Yang & Li, Lingtong & Zhu, Qunzhi, 2021. "Performance improvement of a PVT system using a multilayer structural heat exchanger with PCMs," Renewable Energy, Elsevier, vol. 169(C), pages 308-317.
    4. Carmona, Mauricio & Palacio Bastos, Alberto & García, José Doria, 2021. "Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module," Renewable Energy, Elsevier, vol. 172(C), pages 680-696.
    5. Gaur, Ankita & Ménézo, Christophe & Giroux--Julien, Stéphanie, 2017. "Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium," Renewable Energy, Elsevier, vol. 109(C), pages 168-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    2. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    3. Shakibi, Hamid & Shokri, Afshar & Sobhani, Behnam & Yari, Mortaza, 2023. "Numerical analysis and optimization of a novel photovoltaic thermal solar unit improved by Nano-PCM as an energy storage media and finned collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    7. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    8. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    9. Muhammad Aftab Rafiq & Liguo Zhang & Chih-Chun Kung, 2022. "A Techno-Economic Analysis of Solar Energy Developmental Under Competing Technologies: A Case Study in Jiangxi, China," SAGE Open, , vol. 12(2), pages 21582440221, June.
    10. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    11. Amged Al Ezzi & Miqdam T. Chaichan & Hasan S. Majdi & Ali H. A. Al-Waeli & Hussein A. Kazem & Kamaruzzaman Sopian & Mohammed A. Fayad & Hayder A. Dhahad & Talal Yusaf, 2022. "Nano-Iron Oxide-Ethylene Glycol-Water Nanofluid Based Photovoltaic Thermal (PV/T) System with Spiral Flow Absorber: An Energy and Exergy Analysis," Energies, MDPI, vol. 15(11), pages 1-19, May.
    12. Deka, Manash Jyoti & Kamble, Akash Dilip & Das, Dudul & Sharma, Prabhakar & Ali, Shahadath & Kalita, Paragmoni & Bora, Bhaskor Jyoti & Kalita, Pankaj, 2024. "Enhancing the performance of a photovoltaic thermal system with phase change materials: Predictive modelling and evaluation using neural networks," Renewable Energy, Elsevier, vol. 224(C).
    13. Menon, Govind S. & Murali, S. & Elias, Jacob & Aniesrani Delfiya, D.S. & Alfiya, P.V. & Samuel, Manoj P., 2022. "Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium," Renewable Energy, Elsevier, vol. 188(C), pages 986-996.
    14. Maseer, Muayad M. & Ismail, Firas Basim & Kazem, Hussein A. & Hachim, Dhafer Manea & Al-Gburi, Kumail Abdulkareem Hadi & Chaichan, Miqdam T., 2024. "Performance enhancement of photovoltaic/thermal collector semicircle absorber tubes using nanofluid and NPCM," Renewable Energy, Elsevier, vol. 233(C).
    15. Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
    16. Gao, Xiangkui & Zhang, Zujing & Yuan, Yanping & Cao, Xiaoling & Zeng, Chao & Yan, Da, 2018. "Coupled cooling method for multiple latent heat thermal storage devices combined with pre-cooling of envelope: Model development and operation optimization," Energy, Elsevier, vol. 159(C), pages 508-524.
    17. Rahimi, Masoud & Azimi, Neda & Nouira, Meriem & Shahsavar, Amin, 2023. "Experimental study on photovoltaic panels integrated with metal matrix sheets and bio-based phase change materials," Energy, Elsevier, vol. 262(PA).
    18. Ji, Yasheng & Yuan, Yanping & Zhao, Kaiming & Ji, Wenhui & Zhou, Jinzhi, 2023. "Numerical study on the heat transfer limits of a novel dual-condenser heat pipe integrated with photovoltaic/thermal (PV/T) system," Renewable Energy, Elsevier, vol. 218(C).
    19. Fayaz, H. & Rahim, N.A. & Hasanuzzaman, M. & Nasrin, R. & Rivai, A., 2019. "Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM," Renewable Energy, Elsevier, vol. 143(C), pages 827-841.
    20. B, Prabhu & A, Valan Arasu & P, Gurusamy & A, Amala Mithin Minther Singh & T, Arunkumar, 2024. "Solar photovoltaic cooling using Paraffin phase change material: Comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:452-:d:1572108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.