IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v163y2021ics0040162520313032.html
   My bibliography  Save this article

The social acceptance of nuclear fusion for decision making towards carbon free circular economy: Evidence from Czech Republic

Author

Listed:
  • Čábelková, Inna
  • Strielkowski, Wadim
  • Streimikiene, Dalia
  • Cavallaro, Fausto
  • Streimikis, Justas

Abstract

The social awareness and acceptance of new energy technologies are the key factors of their commercialization in Europe. The decision making in energy sector also requires integration of social preferences. In the context implementation of circular economy and moving towards carbon free economy target in 2050, all carbon free technologies require attention of decision makers including new nuclear technologies. The cutting-edge technologies, such as big data, have the potential to leverage the adoption of circular and carbon free economy concepts by the society. Therefore, the big data can play a major role in terms of acting as a facilitator for gaining the desired information for decision making in energy sector. In this paper, the big data was used for assessment of social acceptance of nuclear fusion. The diverse and representative sample from the Czech Republic (N = 1026, aged 15–95 years, 48.80% women, 18.50% with higher education) was employed to show the dynamics of the formation of public support in a country effectively unaware of the nuclear fusion (NF) (the total pre-survey awareness was 16.6%). The analysis of presentation on NF in Czech mass media concluded that similarly to other European Union countries, the presentation fragmented, insufficient, technical, aimed at people interested in technology with effectively no public discussion on the topic. When briefed with pros and cons of NF, three quarters of the respondents developed an idea on their support of NF in general and in Europe with the level of support reaching one third of the sample. We analyze the relation of NF support using a set of ordinal multinomial regression analyses with spline corrections of ordinal predictors to the four groups of factors: self-claimed awareness and knowledge of NF, sources of information including education, pros and cons of NF, and psychological and value aspects. We show that more information on NF positively influenced the support. Internet news were (negatively) and printed newspapers and magazines were (positively) related to support. The NF being and unlimited source of energy (positively) and using radioactive material and competing for renewables money (negatively) were related to support. Our findings have clear implications for public engagement and communication efforts on NF projects. We suggest that in order to change the level of acceptance for NF more communication and media presentation is needed. We present the ideas on how to frame the communication. Our results are in accord with similar studies from other European countries and therefore our outcomes might find practical applicability there.

Suggested Citation

  • Čábelková, Inna & Strielkowski, Wadim & Streimikiene, Dalia & Cavallaro, Fausto & Streimikis, Justas, 2021. "The social acceptance of nuclear fusion for decision making towards carbon free circular economy: Evidence from Czech Republic," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:tefoso:v:163:y:2021:i:c:s0040162520313032
    DOI: 10.1016/j.techfore.2020.120477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162520313032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2020.120477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Gaskell & Nick Allum & Wolfgang Wagner & Nicole Kronberger & Helge Torgersen & Juergen Hampel & Julie Bardes, 2004. "GM Foods and the Misperception of Risk Perception," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 185-194, February.
    2. Clarke, Christopher E. & Hart, Philip S. & Schuldt, Jonathon P. & Evensen, Darrick T.N. & Boudet, Hilary S. & Jacquet, Jeffrey B. & Stedman, Richard C., 2015. "Public opinion on energy development: The interplay of issue framing, top-of-mind associations, and political ideology," Energy Policy, Elsevier, vol. 81(C), pages 131-140.
    3. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    4. Saghafi, Fatemeh & Noorzad Moghaddam, Ehsan & Aslani, Alireza, 2017. "Examining effective factors in initial acceptance of high-tech localized technologies: Xamin, Iranian localized operating system," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 275-288.
    5. Kerr, Clive & Phaal, Robert, 2020. "Technology roadmapping: Industrial roots, forgotten history and unknown origins," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    6. Entler, Slavomir & Horacek, Jan & Dlouhy, Tomas & Dostal, Vaclav, 2018. "Approximation of the economy of fusion energy," Energy, Elsevier, vol. 152(C), pages 489-497.
    7. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena & Braga, Ana Cristina, 2014. "Public opinion on renewable energy technologies in Portugal," Energy, Elsevier, vol. 69(C), pages 39-50.
    8. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    9. Christian Oltra & Rosario Solá, 2008. "Lay perceptions of nuclear fusion: multiple modes of understanding," Science and Public Policy, Oxford University Press, vol. 35(2), pages 95-105, March.
    10. Ferenc L. Toth, 2008. "Prospects for nuclear power in the 21st century: a world tour," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 30(1/2/3/4), pages 3-27.
    11. Kim, Younghwan & Kim, Minki & Kim, Wonjoon, 2013. "Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 61(C), pages 822-828.
    12. Schweizer-Ries, Petra, 2008. "Energy sustainable communities: Environmental psychological investigations," Energy Policy, Elsevier, vol. 36(11), pages 4126-4135, November.
    13. Truelove, Heather Barnes, 2012. "Energy source perceptions and policy support: Image associations, emotional evaluations, and cognitive beliefs," Energy Policy, Elsevier, vol. 45(C), pages 478-489.
    14. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    15. Carmen Keller & Vivianne Visschers & Michael Siegrist, 2012. "Affective Imagery and Acceptance of Replacing Nuclear Power Plants," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 464-477, March.
    16. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Šálková & Aleš Hes & Petr Kučera, 2023. "Sustainable Consumer Behavior: The Driving Force of Innovation in Retail," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    2. Chauhan, Chetna & Parida, Vinit & Dhir, Amandeep, 2022. "Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    4. Bonaiuto, M. & Mosca, O. & Milani, A. & Ariccio, S. & Dessi, F. & Fornara, F., 2024. "Beliefs about technological and contextual features drive biofuels’ social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carbajo, Ruth & Cabeza, Luisa F., 2018. "Renewable energy research and technologies through responsible research and innovation looking glass: Reflexions, theoretical approaches and contemporary discourses," Applied Energy, Elsevier, vol. 211(C), pages 792-808.
    2. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    3. Ho, Shirley S. & Oshita, Tsuyoshi & Looi, Jiemin & Leong, Alisius D. & Chuah, Agnes S.F., 2019. "Exploring public perceptions of benefits and risks, trust, and acceptance of nuclear energy in Thailand and Vietnam: A qualitative approach," Energy Policy, Elsevier, vol. 127(C), pages 259-268.
    4. Sütterlin, Bernadette & Siegrist, Michael, 2017. "Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power," Energy Policy, Elsevier, vol. 106(C), pages 356-366.
    5. Wang, Jing & Li, Yazhou & Wu, Jianlin & Gu, Jibao & Xu, Shuo, 2020. "Environmental beliefs and public acceptance of nuclear energy in China: A moderated mediation analysis," Energy Policy, Elsevier, vol. 137(C).
    6. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    7. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    8. Bonaiuto, M. & Mosca, O. & Milani, A. & Ariccio, S. & Dessi, F. & Fornara, F., 2024. "Beliefs about technological and contextual features drive biofuels’ social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Van Dael, Miet & Lizin, Sebastien & Swinnen, Gilbert & Van Passel, Steven, 2017. "Young people’s acceptance of bioenergy and the influence of attitude strength on information provision," Renewable Energy, Elsevier, vol. 107(C), pages 417-430.
    10. Kosorić, Vesna & Huang, Huajing & Tablada, Abel & Lau, Siu-Kit & Tan, Hugh T.W., 2019. "Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 197-214.
    11. Okubo, Toshihiro & Narita, Daiju & Rehdanz, Katrin & Schröder, Carsten, 2020. "Preferences for Nuclear Power in Post-Fukushima Japan: Evidence from a Large Nationwide Household Survey," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(11).
    12. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Inna Čábelková & Wadim Strielkowski & Irina Firsova & Marina Korovushkina, 2020. "Public Acceptance of Renewable Energy Sources: a Case Study from the Czech Republic," Energies, MDPI, vol. 13(7), pages 1-15, April.
    14. Goda Perlaviciute & Linda Steg & Nadja Contzen & Sabine Roeser & Nicole Huijts, 2018. "Emotional Responses to Energy Projects: Insights for Responsible Decision Making in a Sustainable Energy Transition," Sustainability, MDPI, vol. 10(7), pages 1-12, July.
    15. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    17. Sherry-Brennan, Fionnguala & Devine-Wright, Hannah & Devine-Wright, Patrick, 2010. "Public understanding of hydrogen energy: A theoretical approach," Energy Policy, Elsevier, vol. 38(10), pages 5311-5319, October.
    18. Yuan, Xueliang & Zuo, Jian & Ma, Chunyuan, 2011. "Social acceptance of solar energy technologies in China--End users' perspective," Energy Policy, Elsevier, vol. 39(3), pages 1031-1036, March.
    19. Lisiak-Zielińska, Marta & Jałoszyńska, Sylwia & Borowiak, Klaudia & Budka, Anna & Dach, Jacek, 2023. "Perception of biogas plants: A public awareness and preference - A case study for the agricultural landscape," Renewable Energy, Elsevier, vol. 217(C).
    20. Timo Kaphengst & Eike Karola Velten, 2014. "Energy Transition and Behavioural Change in Rural Areas – The Role of Energy Cooperatives. WWWforEurope Working Paper No. 60," WIFO Studies, WIFO, number 47214, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:163:y:2021:i:c:s0040162520313032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.