A Long Short-Term Memory–Wasserstein Generative Adversarial Network-Based Data Imputation Method for Photovoltaic Power Output Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhou, Heng & Zheng, Peijun & Dong, Jiuqing & Liu, Jiang & Nakanishi, Yosuke, 2024. "Interpretable feature selection and deep learning for short-term probabilistic PV power forecasting in buildings using local monitoring data," Applied Energy, Elsevier, vol. 376(PA).
- Liu, Wencheng & Mao, Zhizhong, 2024. "Short-term photovoltaic power forecasting with feature extraction and attention mechanisms," Renewable Energy, Elsevier, vol. 226(C).
- Demirhan, Haydar & Renwick, Zoe, 2018. "Missing value imputation for short to mid-term horizontal solar irradiance data," Applied Energy, Elsevier, vol. 225(C), pages 998-1012.
- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Endah Kristiani & Hao Lin & Jwu-Rong Lin & Yen-Hsun Chuang & Chin-Yin Huang & Chao-Tung Yang, 2022. "Short-Term Prediction of PM 2.5 Using LSTM Deep Learning Methods," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
- Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
- Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
- Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Missing data imputation using mixture factor analysis for building electric load data," Applied Energy, Elsevier, vol. 304(C).
- Kasım Zor & Özgür Çelik & Oğuzhan Timur & Ahmet Teke, 2020. "Short-Term Building Electrical Energy Consumption Forecasting by Employing Gene Expression Programming and GMDH Networks," Energies, MDPI, vol. 13(5), pages 1-24, March.
- Lei Fu & Yiling Yang & Xiaolong Yao & Xufen Jiao & Tiantian Zhu, 2019. "A Regional Photovoltaic Output Prediction Method Based on Hierarchical Clustering and the mRMR Criterion," Energies, MDPI, vol. 12(20), pages 1-23, October.
- Robert Basmadjian & Amirhossein Shaafieyoun & Sahib Julka, 2021. "Day-Ahead Forecasting of the Percentage of Renewables Based on Time-Series Statistical Methods," Energies, MDPI, vol. 14(21), pages 1-23, November.
- Benalcazar, Pablo & Kalka, Maciej & Kamiński, Jacek, 2024. "From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems," Energy Policy, Elsevier, vol. 191(C).
- Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
- Kong, Xiangfei & Du, Xinyu & Xue, Guixiang & Xu, Zhijie, 2023. "Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism," Energy, Elsevier, vol. 282(C).
- Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
- Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
- Yeom, Jong-Min & Deo, Ravinesh C. & Adamwoski, Jan F. & Chae, Taebyeong & Kim, Dong-Su & Han, Kyung-Soo & Kim, Do-Yong, 2020. "Exploring solar and wind energy resources in North Korea with COMS MI geostationary satellite data coupled with numerical weather prediction reanalysis variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Chuanjie Xie & Chong Huang & Deqiang Zhang & Wei He, 2021. "BiLSTM-I: A Deep Learning-Based Long Interval Gap-Filling Method for Meteorological Observation Data," IJERPH, MDPI, vol. 18(19), pages 1-12, September.
- Houtian Tang & Yuanlai Wu & Jinxiu Chen & Liuxin Deng & Minjie Zeng, 2022. "How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River," Land, MDPI, vol. 11(12), pages 1-20, December.
- Llinet Benavides-Cesar & Miguel-Ángel Manso-Callejo & Calimanut-Ionut Cira, 2025. "Methodology Based on BERT (Bidirectional Encoder Representations from Transformers) to Improve Solar Irradiance Prediction of Deep Learning Models Trained with Time Series of Spatiotemporal Meteorolog," Forecasting, MDPI, vol. 7(1), pages 1-21, January.
- Sascha Lindig & Atse Louwen & David Moser & Marko Topic, 2020. "Outdoor PV System Monitoring—Input Data Quality, Data Imputation and Filtering Approaches," Energies, MDPI, vol. 13(19), pages 1-18, September.
- Hoyos-Gómez, Laura S. & Ruiz-Muñoz, Jose F. & Ruiz-Mendoza, Belizza J., 2022. "Short-term forecasting of global solar irradiance in tropical environments with incomplete data," Applied Energy, Elsevier, vol. 307(C).
- Haider, Syed Altan & Sajid, Muhammad & Sajid, Hassan & Uddin, Emad & Ayaz, Yasar, 2022. "Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad," Renewable Energy, Elsevier, vol. 198(C), pages 51-60.
- Chen, Minghao & Xie, Zhiyuan & Sun, Yi & Zheng, Shunlin, 2023. "The predictive management in campus heating system based on deep reinforcement learning and probabilistic heat demands forecasting," Applied Energy, Elsevier, vol. 350(C).
More about this item
Keywords
PV output prediction; data imputation; GAN; LSTM; gradient penalty mechanism;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:399-:d:1569612. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.