IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924016544.html
   My bibliography  Save this article

Interpretable feature selection and deep learning for short-term probabilistic PV power forecasting in buildings using local monitoring data

Author

Listed:
  • Zhou, Heng
  • Zheng, Peijun
  • Dong, Jiuqing
  • Liu, Jiang
  • Nakanishi, Yosuke

Abstract

Accurate probabilistic forecasting of photovoltaic (PV) power is crucial for optimizing energy scheduling in smart buildings and ensuring the low-carbon, efficient operation of building energy management systems (BEMS). However, existing feature selection techniques fail to guarantee that the selected features genuinely impact the output of forecasting models. Additionally, traditional black-box deep learning models lack clarity on whether their output truly relies on those selected features. These challenges limit the accuracy of forecasting models. To address these challenges, a novel methodology named temporal importance model explanation and temporal fusion transformers (TIME-TFT) model is proposed. Firstly, the TIME method is employed for feature selection, and interpretable outputs are used to identify important global features. Secondly, the TFT model is then utilized for forecasting tasks, providing interpretable outputs to track back to the features that TFT model pays attention to. Finally, the consistency between the interpretable outputs of TIME method and TFT model is examined to confirm predictions are based on genuinely learned selected features. Empirical studies demonstrate the superiority of the proposed TIME-TFT system, outperforming comparable models with an R2 of 0.9546. In summary, the interpretable outputs not only improve the accuracy of predictions but also provides visual evidence for predictions, thereby bolstering effectiveness and credibility in engineering practices.

Suggested Citation

  • Zhou, Heng & Zheng, Peijun & Dong, Jiuqing & Liu, Jiang & Nakanishi, Yosuke, 2024. "Interpretable feature selection and deep learning for short-term probabilistic PV power forecasting in buildings using local monitoring data," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016544
    DOI: 10.1016/j.apenergy.2024.124271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Chuanfu & Wei, Pengcheng, 2018. "Enhanced support vector regression based forecast engine to predict solar power output," Renewable Energy, Elsevier, vol. 127(C), pages 269-283.
    2. Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).
    3. Li, Bingxu & Cheng, Fanyong & Zhang, Xin & Cui, Can & Cai, Wenjian, 2021. "A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data," Applied Energy, Elsevier, vol. 285(C).
    4. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    5. Peng Liu & Peijun Zheng & Ziyu Chen, 2019. "Deep Learning with Stacked Denoising Auto-Encoder for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 12(12), pages 1-15, June.
    6. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    7. Claudio Monteiro & Tiago Santos & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado & M. Sonia Terreros-Olarte, 2013. "Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity," Energies, MDPI, vol. 6(5), pages 1-20, May.
    8. Simeunović, Jelena & Schubnel, Baptiste & Alet, Pierre-Jean & Carrillo, Rafael E. & Frossard, Pascal, 2022. "Interpretable temporal-spatial graph attention network for multi-site PV power forecasting," Applied Energy, Elsevier, vol. 327(C).
    9. Somers, Mark & Whittaker, Joe, 2007. "Quantile regression for modelling distributions of profit and loss," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1477-1487, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu Liu & Lingfeng Xuan & Dehuang Gong & Xinlin Xie & Dongguo Zhou, 2025. "A Long Short-Term Memory–Wasserstein Generative Adversarial Network-Based Data Imputation Method for Photovoltaic Power Output Prediction," Energies, MDPI, vol. 18(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Lenk & Marcus Vogt & Christoph Herrmann, 2024. "An Approach to Predicting Energy Demand Within Automobile Production Using the Temporal Fusion Transformer Model," Energies, MDPI, vol. 18(1), pages 1-34, December.
    2. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    3. Niu, Zhewen & Han, Xiaoqing & Zhang, Dongxia & Wu, Yuxiang & Lan, Songyan, 2024. "Interpretable wind power forecasting combining seasonal-trend representations learning with temporal fusion transformers architecture," Energy, Elsevier, vol. 306(C).
    4. Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
    5. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    6. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    8. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    9. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    10. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    11. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    12. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.
    13. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    14. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    15. Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
    16. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    17. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    18. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    19. Isaac Gallardo & Daniel Amor & Álvaro Gutiérrez, 2023. "Recent Trends in Real-Time Photovoltaic Prediction Systems," Energies, MDPI, vol. 16(15), pages 1-17, July.
    20. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.