Author
Listed:
- Umme Mumtahina
(School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia)
- Sanath Alahakoon
(School of Engineering and Technology, Central Queensland University, Gladstone, QLD 4680, Australia)
- Peter Wolfs
(School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia)
Abstract
This paper addresses the problem of finding the optimal position and sizing of battery energy storage (BES) devices using a two-stage optimization technique. The primary stage uses mixed integer linear programming (MILP) to find the optimal positions along with their sizes. In the secondary stage, a relatively new algorithm called mountain gazelle optimizer (MGO) is implemented to find the technical feasibility of the solution, such as voltage regulation, energy loss reduction, etc., provided by the primary stage. The main objective of the proposed bi-level optimization technique is to improve the voltage profile and minimize the power loss. During the daily operation of the distribution grid, the charging and discharging behaviour is controlled by minimizing the voltage at each bus. The energy storage dispatch curve along with the locations and sizes are given as inputs to MGO to improve the voltage profile and reduce the line loss. Simulations are carried out in the MATLAB programming environment using an Australian radial distribution feeder, with results showing a reduction in system losses by 8.473%, which outperforms Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and Cuckoo Search Algorithm (CSA) by 1.059%, 1.144%, and 1.056%, respectively. During the peak solar generation period, MGO manages to contain the voltages within the upper boundary, effectively reducing reverse power flow and enhancing voltage regulation. The voltage profile is also improved, with MGO achieving a 0.348% improvement in voltage during peak load periods, compared to improvements of 0.221%, 0.105%, and 0.253% by GWO, WOA, and CSA, respectively. Furthermore, MGO’s optimization achieves a reduction in the fitness value to 47.260 after 47 iterations, demonstrating faster and more consistent convergence compared to GWO (47.302 after 60 iterations), WOA (47.322 after 20 iterations), and CSA (47.352 after 79 iterations). This comparative analysis highlights the effectiveness of the proposed two-stage optimization approach in enhancing voltage stability, reducing power loss, and ensuring better performance over existing methods.
Suggested Citation
Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2025.
"Optimal Allocation and Sizing of Battery Energy Storage System in Distribution Network Using Mountain Gazelle Optimization Algorithm,"
Energies, MDPI, vol. 18(2), pages 1-19, January.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:2:p:379-:d:1568954
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:379-:d:1568954. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.