IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i1p201-d1560649.html
   My bibliography  Save this article

BIM-Based Machine Learning Application for Parametric Assessment of Building Energy Performance

Author

Listed:
  • Panagiotis Tsikas

    (Department of Civil Engineering, University of Patras, 26500 Patras, Greece)

  • Athanasios Chassiakos

    (Department of Civil Engineering, University of Patras, 26500 Patras, Greece)

  • Vasileios Papadimitropoulos

    (Department of Civil Engineering, University of Patras, 26500 Patras, Greece)

  • Antonios Papamanolis

    (Department of Civil Engineering, University of Patras, 26500 Patras, Greece)

Abstract

The energy performance of buildings has become a main concern globally in response to increased energy demand, the environmental impacts of energy production, and the reality of energy poverty. To improve energy efficiency, proper building design should be secured at the early design phase. Digital tools are currently available for performing energy assessment analyses and can efficiently handle complex and technically demanding buildings. However, alternative designs should be checked individually, and this makes the process time-consuming and prone to errors. Machine learning techniques can provide valuable assistance in developing decision support tools. In this paper, typical residential buildings are considered along with eleven factors that highly affect energy performance. A dataset of 337 instances of such parameters is developed. For each dataset, the building energy performance is estimated based on BIM analysis. Next, statistical and machine learning techniques are implemented to provide artificial models of energy performance. They include statistical regression modeling (SRM), decision trees (DTs), random forests (RFs), and artificial neural networks (ANNs). The analysis reveals the contribution of each factor and highlights the ANN as the best performing model. An easy-to-use interface tool has been developed for the instantaneous calculation of the energy performance based on the independent parameter values.

Suggested Citation

  • Panagiotis Tsikas & Athanasios Chassiakos & Vasileios Papadimitropoulos & Antonios Papamanolis, 2025. "BIM-Based Machine Learning Application for Parametric Assessment of Building Energy Performance," Energies, MDPI, vol. 18(1), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:201-:d:1560649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Guimei & Mukhtar, Azfarizal & Moayedi, Hossein & Khalilpoor, Nima & Tt, Quynh, 2024. "Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector," Energy, Elsevier, vol. 298(C).
    2. Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
    3. Lu, Chujie & Li, Sihui & Reddy Penaka, Santhan & Olofsson, Thomas, 2023. "Automated machine learning-based framework of heating and cooling load prediction for quick residential building design," Energy, Elsevier, vol. 274(C).
    4. Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
    5. Khajavi, Hamed & Rastgoo, Amir, 2023. "Improving the prediction of heating energy consumed at residential buildings using a combination of support vector regression and meta-heuristic algorithms," Energy, Elsevier, vol. 272(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Xiuying & Ji, Xingxing & Meng, Qinglong & Sun, Hang & Lei, Yu, 2024. "A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism," Energy, Elsevier, vol. 292(C).
    2. World Bank Group, 2024. "Poland Country Climate and Development Report," World Bank Publications - Reports 42286, The World Bank Group.
    3. Arash Hosseini Gourabpasi & Farzad Jalaei & Mehdi Ghobadi, 2025. "Developing an openBIM Information Delivery Specifications Framework for Operational Carbon Impact Assessment of Building Projects," Sustainability, MDPI, vol. 17(2), pages 1-22, January.
    4. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    5. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    7. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    8. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
    9. Marian B. Gorzałczany & Filip Rudziński, 2024. "Energy Consumption Prediction in Residential Buildings—An Accurate and Interpretable Machine Learning Approach Combining Fuzzy Systems with Evolutionary Optimization," Energies, MDPI, vol. 17(13), pages 1-24, July.
    10. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    11. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    12. Jianwu Xiong & Linlin Chen & Yin Zhang, 2023. "Building Energy Saving for Indoor Cooling and Heating: Mechanism and Comparison on Temperature Difference," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    13. Bürger, Katrin & Roloff, Malte & Lundborg, Martin & Happ, Marina & Tenbrock, Sebastian & Papen, Marie-Christin, 2024. "Vernetzte Produktion: 360 Grad Überblick über die Perspektiven in KMU," WIK Discussion Papers 521, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH.
    14. Manoj Manivannan & Behzad Najafi & Fabio Rinaldi, 2017. "Machine Learning-Based Short-Term Prediction of Air-Conditioning Load through Smart Meter Analytics," Energies, MDPI, vol. 10(11), pages 1-17, November.
    15. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    16. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    17. Li, Ao & Xiao, Fu & Zhang, Chong & Fan, Cheng, 2021. "Attention-based interpretable neural network for building cooling load prediction," Applied Energy, Elsevier, vol. 299(C).
    18. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    19. Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).
    20. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:201-:d:1560649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.