IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2103-d1384823.html
   My bibliography  Save this article

A Novel PETG Microchannel Reactor for Microwave-Powered Biodiesel Production

Author

Listed:
  • Koguleshun Subramaniam

    (Carbon Neutrality Research Group, University of Southampton Malaysia, Iskandar Puteri 79100, Malaysia)

  • Kang Yao Wong

    (Carbon Neutrality Research Group, University of Southampton Malaysia, Iskandar Puteri 79100, Malaysia)

  • Kok Hoe Wong

    (Carbon Neutrality Research Group, University of Southampton Malaysia, Iskandar Puteri 79100, Malaysia)

  • Cheng Tung Chong

    (China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai 201306, China)

  • Jo-Han Ng

    (Carbon Neutrality Research Group, University of Southampton Malaysia, Iskandar Puteri 79100, Malaysia)

Abstract

Biodiesel stands at the forefront as a replacement for fossil diesel in compression ignition engines, particularly in the transportation sector where diesel engines are the primary movers. However, biodiesel production is hampered by poor heat and mass transfer during the transesterification reaction, leading to long production times and high costs due to inefficient energy utilisation. This study targets heat and mass transfer issues during the production of biodiesel via a synergic approach that combines microwave-assisted heating and microfluidics via a polyethylene terephthalate glycol (PETG) microchannel reactor. The transesterification reaction of palm oil and methanol was investigated using a full factorial design of experiments (DOE) method. Biodiesel yield was quantified via gas chromatographic analysis, and the results were optimised using statistical analysis. Optical analysis of slug quantification within the microchannel revealed that small slugs, smaller than 1 mm, accelerated the transesterification reaction. The composite-optimised experimental results, aimed at minimising energy costs and environmental impacts while maximising fatty acid methyl ester (FAME) yield, indicate a reaction temperature of 50 °C, a catalyst loading of 1.0 wt.%, and a 3:1 methanol to oil molar ratio. Regression analysis revealed that the reaction temperature was statistically insignificant when utilising the PETG microchannel reactor. This key finding positively impacts biodiesel production as it relates to significantly reduced energy intensity, costs, and emissions. Overall, this research work paves a pathway toward an energy-efficient and sub-minute rapid transesterification reaction, highlighting the effectiveness of microwave heat delivery and effects of microfluidics via the PETG microchannel reactor in overcoming heat and mass transfer barriers in biodiesel production.

Suggested Citation

  • Koguleshun Subramaniam & Kang Yao Wong & Kok Hoe Wong & Cheng Tung Chong & Jo-Han Ng, 2024. "A Novel PETG Microchannel Reactor for Microwave-Powered Biodiesel Production," Energies, MDPI, vol. 17(9), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2103-:d:1384823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Afiq Mohd Laziz & Chong Yang Chuah & Jens Denecke & Muhammad Roil Bilad & Ku Zilati Ku Shaari, 2023. "Investigation of Mass-Transfer Performance for Biodiesel Reaction in Microchannel Reactor using Volume-of-Fluid with Species-Transport Model," Sustainability, MDPI, vol. 15(7), pages 1-14, April.
    2. García-Martín, Juan Francisco & Barrios, Carmen C. & Alés-Álvarez, Francisco-Javier & Dominguez-Sáez, Aida & Alvarez-Mateos, Paloma, 2018. "Biodiesel production from waste cooking oil in an oscillatory flow reactor. Performance as a fuel on a TDI diesel engine," Renewable Energy, Elsevier, vol. 125(C), pages 546-556.
    3. Ayesha Mushtaq & Muhammad Asif Hanif & Muhammad Zahid & Umer Rashid & Zahid Mushtaq & Muhammad Zubair & Bryan R. Moser & Fahad A. Alharthi, 2021. "Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel," Energies, MDPI, vol. 14(21), pages 1-13, November.
    4. Hassan, Aso A. & Smith, Joseph D., 2020. "Investigation of microwave-assisted transesterification reactor of waste cooking oil," Renewable Energy, Elsevier, vol. 162(C), pages 1735-1746.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Ogunkunle, Oyetola & Ahmed, Noor A., 2019. "Performance evaluation of a diesel engine using blends of optimized yields of sand apple (Parinari polyandra) oil biodiesel," Renewable Energy, Elsevier, vol. 134(C), pages 1320-1331.
    3. Guedes do Nascimento, Leomário & Costa Monteiro, Luciane Pimentel & de Cássia Colman Simões, Rita & Prata, Diego Martinez, 2023. "Eco-efficiency analysis and intensification of the biodiesel production process through vapor recompression strategy," Energy, Elsevier, vol. 275(C).
    4. Alçelik, Necdet & Sarıdemir, Suat & Polat, Fikret & Ağbulut, Ümit, 2024. "Role of hydrogen-enrichment for in-direct diesel engine behaviours fuelled with the diesel-waste biodiesel blends," Energy, Elsevier, vol. 302(C).
    5. Cui, Yunlei & Zhang, Yaning & Cui, Longfei & Xiong, Qingang & Mostafa, Ehab, 2023. "Microwave-assisted fluidized bed reactor pyrolysis of polypropylene plastic for pyrolysis gas production towards a sustainable development," Applied Energy, Elsevier, vol. 342(C).
    6. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    7. Gómez-Castro, F.I. & Gutiérrez-Antonio, C. & Romero-Izquierdo, A.G. & May-Vázquez, M.M. & Hernández, S., 2023. "Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Juan Francisco García-Martín & Francisco Javier Alés-Álvarez & Miguel Torres-García & Chao-Hui Feng & Paloma Álvarez-Mateos, 2019. "Production of Oxygenated Fuel Additives from Residual Glycerine Using Biocatalysts Obtained from Heavy-Metal-Contaminated Jatropha curcas L. Roots," Energies, MDPI, vol. 12(4), pages 1-12, February.
    9. Suherman Suherman & Ilmi Abdullah & Muhammad Sabri & Arridina Susan Silitonga, 2023. "Evaluation of Physicochemical Properties Composite Biodiesel from Waste Cooking Oil and Schleichera oleosa Oil," Energies, MDPI, vol. 16(15), pages 1-20, August.
    10. Meshack Hawi & Ahmed Elwardany & Mohamed Ismail & Mahmoud Ahmed, 2019. "Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles," Energies, MDPI, vol. 12(5), pages 1-18, February.
    11. Chuepeng, Sathaporn & Komintarachat, Cholada, 2018. "Interesterification optimization of waste cooking oil and ethyl acetate over homogeneous catalyst for biofuel production with engine validation," Applied Energy, Elsevier, vol. 232(C), pages 728-739.
    12. Radosław Ciesielski & Mateusz Zakrzewski & Oleksandr Shtyka & Tomasz Maniecki & Adam Rylski & Marek Wozniak & Przemyslaw Kubiak & Krzysztof Siczek, 2022. "The Research on Characteristics of CI Engine Supplied with Biodiesels from Brown and Yellow Grease," Energies, MDPI, vol. 15(11), pages 1-17, June.
    13. Aliru O. Mustapha & Rasidat A. Adepoju & Rofiat Y. Ajiboye & Yemisi T. Afolabi & Samsudeen O Azeez & Abdulfatai T Ajiboye, 2021. "Improvement of Fuel properties and Fatty Acid Composition of Biodiesel from Waste Cooking Oil after Refining Processes," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 8(4), pages 80-87, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2103-:d:1384823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.