IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2093-d1384275.html
   My bibliography  Save this article

The Formation–Structure–Functionality Relationship of Catalyst Layers in Proton Exchange Membrane Fuel Cells

Author

Listed:
  • Donglei Yang

    (Department of Mechanical Engineering, University of California, 5200 N Lake Rd, Merced, CA 95343, USA
    These authors contributed equally to this work.)

  • Nitul Kakati

    (Department of Mechanical Engineering, University of California, 5200 N Lake Rd, Merced, CA 95343, USA
    These authors contributed equally to this work.)

  • Mrittunjoy Sarker

    (Department of Mechanical Engineering, University of California, 5200 N Lake Rd, Merced, CA 95343, USA)

  • Felipe Mojica

    (Department of Mechanical Engineering, University of California, 5200 N Lake Rd, Merced, CA 95343, USA)

  • Po-Ya Abel Chuang

    (Department of Mechanical Engineering, University of California, 5200 N Lake Rd, Merced, CA 95343, USA)

Abstract

Understanding the relationship between the formation, structure, and functionality of catalyst layers is crucial for designing catalyst layers with specific high-current-density operations. In this study, we investigated the impact of the ionomer-to-carbon (I/C) ratio and solid content on transport properties. We conducted fuel cell performance and diagnostic measurements to demonstrate the combined effects of the I/C ratio and solid content on the mass transport, particularly oxygen transport. To elucidate the roles of the I/C ratio and solid content in catalyst layer formation, we utilized dynamic light scattering and rheological measurements. By analyzing the local and global structure of ionomer-Pt/C assemblages in the catalyst inks, we observed that the I/C ratio and solid content influence the competition between homo-aggregation and hetero-aggregation, the strengths of inter- and intra-cluster bonds, and the rigidity and connectivity of the particulate structure. Additionally, high-shear-application simulations tend to reduce the connectivity of the particulate network and induce cluster densification, unless the global structure is mechanically stable and resilient. Based on this understanding, we established the formation–structure–functionality relationship for catalyst layers, thereby providing fundamental insights for designing catalyst layers tailored to specific functionalities.

Suggested Citation

  • Donglei Yang & Nitul Kakati & Mrittunjoy Sarker & Felipe Mojica & Po-Ya Abel Chuang, 2024. "The Formation–Structure–Functionality Relationship of Catalyst Layers in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 17(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2093-:d:1384275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mu, Yu-Tong & Weber, Adam Z. & Gu, Zhao-Lin & Tao, Wen-Quan, 2019. "Mesoscopic modeling of transport resistances in a polymer-electrolyte fuel-cell catalyst layer: Analysis of hydrogen limiting currents," Applied Energy, Elsevier, vol. 255(C).
    2. Rahman, Md Azimur & Sarker, Mrittunjoy & Mojica, Felipe & Chuang, Po-Ya Abel, 2022. "A physics-based 1-D PEMFC model for simulating two-phase water transport in the electrode and gas diffusion media," Applied Energy, Elsevier, vol. 316(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chuanjie & Li, Jia & Zhang, Siao & Li, Xiaoke & Duan, Xiao & Wu, Yongquan & Zhang, Qinghao & Yang, Tianrang & Liu, Jianguo, 2024. "High-precision identification of polarization processes of proton exchange membrane fuel cells through relaxation time analysis: Targeted experimental design and verification," Applied Energy, Elsevier, vol. 367(C).
    2. Saeidfar, Asal & Yesilyurt, Serhat, 2023. "Numerical investigation of the effects of catalyst layer composition and channel to rib width ratios for low platinum loaded PEMFCs," Applied Energy, Elsevier, vol. 339(C).
    3. Siwen Gu & Jiaan Wang & Xinmin You & Yu Zhuang, 2023. "Investigating the Parameter-Driven Cathode Gas Diffusion of PEMFCs with a Piecewise Linearization Model," Energies, MDPI, vol. 16(9), pages 1-12, April.
    4. Zhang, Ruiyuan & Min, Ting & Chen, Li & Li, Hailong & Yan, Jinyue & Tao, Wen-Quan, 2022. "Pore-scale study of effects of relative humidity on reactive transport processes in catalyst layers in PEMFC," Applied Energy, Elsevier, vol. 323(C).
    5. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    6. Akbar, Ali & Um, Sukkee, 2022. "Influence of external clamping pressure on nanoscopic mechanical deformation and catalyst utilization of quaternion PtC catalyst layers for PEMFCs," Renewable Energy, Elsevier, vol. 194(C), pages 195-210.
    7. Mehrazi, Shirin & Homayouni, Taymaz & Kakati, Nitul & Sarker, Mrittunjoy & Rolfe, Philip & Chuang, Po-Ya Abel, 2024. "A Rheo-Impedance investigation on the interparticle interactions in the catalyst ink and its impact on electrode network formation in a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 359(C).
    8. Rolando Pedicini & Marcello Romagnoli & Paolo E. Santangelo, 2023. "A Critical Review of Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications: Components, Materials, and Comparative Assessment," Energies, MDPI, vol. 16(7), pages 1-28, March.
    9. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    10. He, Pu & Mu, Yu-Tong & Park, Jae Wan & Tao, Wen-Quan, 2020. "Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2093-:d:1384275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.