IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1943-d1378632.html
   My bibliography  Save this article

Characteristics of Low-Temperature Gasification Products from Wheat Straw in a Fluidized Bed Based on Cement Production Process

Author

Listed:
  • Chen Dai

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Tengfei He

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Baosheng Jin

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Qixin Gu

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Shuchao Cheng

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Yi Chen

    (Sinoma International Engineering Co., Ltd., Nanjing 211100, China)

  • Yu Cai

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

Abstract

This study aimed to improve the safety and economy of cement production and to investigate the gasification performance and tar properties of wheat straw in a small electrically heated bubbling fluidized bed by varying three factors, namely, gasification reaction conditions, fuel quality and type, and the natural environment, so as to promote the application of the low-temperature gasification of biomass in the cement industry. The gasification experiment was carried out at temperatures of 550–700 °C, air equivalence ratios of 0.1–0.2, moisture contents of 5.25–24%, blended rubber ratios of 0–100%, and furnace vacuums of 0–0.03 within the parameter ranges, and the component analyses of the produced gases and tars were carried out by gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS). The experimental findings revealed that the optimal operating conditions for gasification were attained at a temperature of 650 °C, an equivalence ratio of 0.15, a moisture content of 5.25%, a rubber blending ratio of 0, and a vacuum degree of 0. Under these conditions, the concentrations of combustible components (H 2 , CH 4 , and CO) in the produced gas were 4.01%, 4.60%, and 21.05%, respectively. The carbon conversion rate was 62.40%, with the cold gas efficiency of 39.37%. The lower heating value of the produced gas was 5.915 MJ/Nm 3 , accompanied by a tar yield of 118.15 g/Nm 3 and lower heating value of 3.385 MJ/Nm 3 .

Suggested Citation

  • Chen Dai & Tengfei He & Baosheng Jin & Qixin Gu & Shuchao Cheng & Yi Chen & Yu Cai, 2024. "Characteristics of Low-Temperature Gasification Products from Wheat Straw in a Fluidized Bed Based on Cement Production Process," Energies, MDPI, vol. 17(8), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1943-:d:1378632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gröbl, Thomas & Walter, Heimo & Haider, Markus, 2012. "Biomass steam gasification for production of SNG – Process design and sensitivity analysis," Applied Energy, Elsevier, vol. 97(C), pages 451-461.
    2. Phuphuakrat, Thana & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption," Applied Energy, Elsevier, vol. 87(7), pages 2203-2211, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    2. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    3. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    4. Csaba Fogarassy & Laszlo Toth & Marton Czikkely & David Christian Finger, 2019. "Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems," Resources, MDPI, vol. 8(4), pages 1-14, December.
    5. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    6. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    7. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    8. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    9. Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
    10. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    11. Adnan, Muflih A. & Hossain, Mohammad M. & Golam Kibria, Md, 2022. "Converting waste into fuel via integrated thermal and electrochemical routes: An analysis of thermodynamic approach on thermal conversion," Applied Energy, Elsevier, vol. 311(C).
    12. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari & Mousavi, Seyed Ali, 2019. "Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses," Energy, Elsevier, vol. 169(C), pages 61-78.
    13. Jia, Junxi & Abudula, Abuliti & Wei, Liming & Sun, Baozhi & Shi, Yue, 2015. "Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system," Renewable Energy, Elsevier, vol. 81(C), pages 400-410.
    14. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    15. Zou, Xuehua & Chen, Tianhu & Zhang, Ping & Chen, Dong & He, Junkai & Dang, Yanliu & Ma, Zhiyuan & Chen, Ye & Toloueinia, Panteha & Zhu, Chengzhu & Xie, Jingjing & Liu, Haibo & Suib, Steven L., 2018. "High catalytic performance of Fe-Ni/Palygorskite in the steam reforming of toluene for hydrogen production," Applied Energy, Elsevier, vol. 226(C), pages 827-837.
    16. Ciuta, Simona & Patuzzi, Francesco & Baratieri, Marco & Castaldi, Marco J., 2018. "Enthalpy changes during pyrolysis of biomass: Interpretation of intraparticle gas sampling," Applied Energy, Elsevier, vol. 228(C), pages 1985-1993.
    17. Karl, Jürgen & Pröll, Tobias, 2018. "Steam gasification of biomass in dual fluidized bed gasifiers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 64-78.
    18. Jiang, Shengjuan & Hu, Xun & Xia, Daohong & Li, Chun-Zhu, 2016. "Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature," Applied Energy, Elsevier, vol. 183(C), pages 542-551.
    19. Wang, Duo & Yuan, Wenqiao & Ji, Wei, 2011. "Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning," Applied Energy, Elsevier, vol. 88(5), pages 1656-1663, May.
    20. Se-Won Park & Sang-Yeop Lee & Yean-Ouk Jeong & Gun-Ho Han & Yong-Chil Seo, 2018. "Effects of Oxygen Enrichment in Air Oxidants on Biomass Gasification Efficiency and the Reduction of Tar Emissions," Energies, MDPI, vol. 11(10), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1943-:d:1378632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.