IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1822-d1373471.html
   My bibliography  Save this article

Future Distribution Networks: A Review

Author

Listed:
  • Zahid Javid

    (Department of Electrical and Electronics Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong)

  • Ilhan Kocar

    (Department of Electrical and Electronics Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong)

  • William Holderbaum

    (School of Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M15 GD, UK)

  • Ulas Karaagac

    (Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey)

Abstract

This manuscript presents a comprehensive review of recent advancements in electrical distribution networks, with a specific focus on the incorporation of direct current (DC) applications. The research aims to comprehensively address the current and future aspects of DC, spanning from the distribution level to the utilization level. The renewed interest in DC power systems has led to the investigation of several transitional challenges in recent years. A significant portion of these efforts has been dedicated to determining the feasibility of applying DC to specific use cases. Additionally, the literature has explored design considerations such as system architecture and voltage levels, the integration of DC into existing distribution networks, load flow (LF) computations, and the distinct safety concerns associated with DC power systems. In this paper, the various research endeavors are categorized, evaluated, and scrutinized to assess the current state of the transition from a purely alternating current (AC) distribution system to a solely DC or hybrid AC/DC distribution system. A bibliometric analysis is conducted, constructing a network of co-occurrence based on author-provided keywords, which reveals the primary research foci in this domain. The barriers hindering the widespread adoption of DC distribution systems and potential solutions are also discussed. Moreover, this article synthesizes ongoing efforts to address these obstacles and delineates future research directions by emphasizing the existing knowledge gaps.

Suggested Citation

  • Zahid Javid & Ilhan Kocar & William Holderbaum & Ulas Karaagac, 2024. "Future Distribution Networks: A Review," Energies, MDPI, vol. 17(8), pages 1-46, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1822-:d:1373471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Shibo & Phung, B.T. & Zhang, Daming, 2018. "A comprehensive review on DC arc faults and their diagnosis methods in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 88-98.
    2. Gerber, Daniel L. & Vossos, Vagelis & Feng, Wei & Marnay, Chris & Nordman, Bruce & Brown, Richard, 2018. "A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings," Applied Energy, Elsevier, vol. 210(C), pages 1167-1187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Wang & Cuiyan Bai & Xiaopeng Qian & Wanting Liu & Chen Zhu & Leijiao Ge, 2022. "A DC Series Arc Fault Detection Method Based on a Lightweight Convolutional Neural Network Used in Photovoltaic System," Energies, MDPI, vol. 15(8), pages 1-20, April.
    2. Lina Wang & Ehtisham Lodhi & Pu Yang & Hongcheng Qiu & Waheed Ur Rehman & Zeeshan Lodhi & Tariku Sinshaw Tamir & M. Adil Khan, 2022. "Adaptive Local Mean Decomposition and Multiscale-Fuzzy Entropy-Based Algorithms for the Detection of DC Series Arc Faults in PV Systems," Energies, MDPI, vol. 15(10), pages 1-16, May.
    3. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    4. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    5. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.
    6. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    7. Rémy Cleenwerck & Hakim Azaioud & Majid Vafaeipour & Thierry Coosemans & Jan Desmet, 2023. "Impact Assessment of Electric Vehicle Charging in an AC and DC Microgrid: A Comparative Study," Energies, MDPI, vol. 16(7), pages 1-17, April.
    8. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
    9. Keteng Jiang & Haibo Li & Xi Ye & Yi Lei & Keng-Weng Lao & Shuqing Zhang & Xianfa Hu, 2022. "Energy Efficiency Evaluation and Revenue Distribution of DC Power Distribution Systems in Nearly Zero Energy Buildings," Energies, MDPI, vol. 15(15), pages 1-23, August.
    10. Wu, Zhi & Liu, Pengxiang & Gu, Wei & Huang, He & Han, Jun, 2018. "A bi-level planning approach for hybrid AC-DC distribution system considering N-1 security criterion," Applied Energy, Elsevier, vol. 230(C), pages 417-428.
    11. Eskander, Monica M. & Silva, Carlos A., 2023. "Techno-economic and environmental comparative analysis for DC microgrids in households: Portuguese and French household case study," Applied Energy, Elsevier, vol. 349(C).
    12. Gerber, Daniel L. & Liou, Richard & Brown, Richard, 2019. "Energy-saving opportunities of direct-DC loads in buildings," Applied Energy, Elsevier, vol. 248(C), pages 274-287.
    13. Hasan Erteza Gelani & Faizan Dastgeer & Sayyad Ahmad Ali Shah & Faisal Saeed & Muhammad Hassan Yousuf & Hafiz Muhammad Waqas Afzal & Abdullah Bilal & Md. Shahariar Chowdhury & Kuaanan Techato & Sittip, 2022. "Comparative Efficiency and Sensitivity Analysis of AC and DC Power Distribution Paradigms for Residential Localities," Sustainability, MDPI, vol. 14(13), pages 1-52, July.
    14. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    15. Shaowu Li & Kunyi Chen & Qin Li & Qing Ai, 2022. "A Variable-Weather-Parameter MPPT Method Based on Equation Solution for Photovoltaic System with DC Bus," Energies, MDPI, vol. 15(18), pages 1-25, September.
    16. Yaseen Ahmed Mohammed Alsumaidaee & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Kharudin Ali, 2022. "Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning," Energies, MDPI, vol. 15(18), pages 1-34, September.
    17. Shaojie Li & Tao Zhang & Xiaochen Liu & Xiaohua Liu, 2023. "A Battery Capacity Configuration Method of a Photovoltaic and Battery System Applied in a Building Complex for Increased Self-Sufficiency and Self-Consumption," Energies, MDPI, vol. 16(5), pages 1-18, February.
    18. Lei Song & Chunguang Lu & Chen Li & Yongjin Xu & Lin Liu & Xianbo Wang, 2024. "Progress of Photovoltaic DC Fault Arc Detection Based on VOSviewer Bibliometric Analysis," Energies, MDPI, vol. 17(11), pages 1-17, May.
    19. Lina Wang & Hongcheng Qiu & Pu Yang & Longhua Mu, 2021. "Arc Fault Detection Algorithm Based on Variational Mode Decomposition and Improved Multi-Scale Fuzzy Entropy," Energies, MDPI, vol. 14(14), pages 1-16, July.
    20. Teng Li & Zhijie Jiao & Lina Wang & Yong Mu, 2020. "A Method of DC Arc Detection in All-Electric Aircraft," Energies, MDPI, vol. 13(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1822-:d:1373471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.