IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v163y2008i1p143-16810.1007-s10479-008-0327-0.html
   My bibliography  Save this article

Self-tuning of fuzzy belief rule bases for engineering system safety analysis

Author

Listed:
  • Jun Liu
  • Jian-Bo Yang
  • Da Ruan
  • Luis Martinez
  • Jin Wang

Abstract

A framework for modelling the safety of an engineering system using a fuzzy rule-based evidential reasoning (FURBER) approach has been recently proposed, where a fuzzy rule-base designed on the basis of a belief structure (called a belief rule base) forms a basis in the inference mechanism of FURBER. However, it is difficult to accurately determine the parameters of a fuzzy belief rule base (FBRB) entirely subjectively, in particular for complex systems. As such, there is a need to develop a supporting mechanism that can be used to train in a locally optimal way a FBRB initially built using expert knowledge. In this paper, the methods for self-tuning a FBRB for engineering system safety analysis are investigated on the basis of a previous study. The method consists of a number of single and multiple objective nonlinear optimization models. The above framework is applied to model the system safety of a marine engineering system and the case study is used to demonstrate how the methods can be implemented. Copyright Springer Science+Business Media, LLC 2008

Suggested Citation

  • Jun Liu & Jian-Bo Yang & Da Ruan & Luis Martinez & Jin Wang, 2008. "Self-tuning of fuzzy belief rule bases for engineering system safety analysis," Annals of Operations Research, Springer, vol. 163(1), pages 143-168, October.
  • Handle: RePEc:spr:annopr:v:163:y:2008:i:1:p:143-168:10.1007/s10479-008-0327-0
    DOI: 10.1007/s10479-008-0327-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0327-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0327-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ying-Ming & Yang, Jian-Bo & Xu, Dong-Ling, 2006. "Environmental impact assessment using the evidential reasoning approach," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1885-1913, November.
    2. Yang, Jian-Bo, 2001. "Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties," European Journal of Operational Research, Elsevier, vol. 131(1), pages 31-61, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Calzada & Jun Liu & Hui Wang & Anil Kashyap, 2012. "An empirical comparative study for urban regeneration: measuring the effectiveness of DSS and GIS approaches," ERES eres2012_148, European Real Estate Society (ERES).
    2. Xinyang Deng & Yong Deng & Felix Chan, 2014. "An improved operator of combination with adapted conflict," Annals of Operations Research, Springer, vol. 223(1), pages 451-459, December.
    3. Dong-Ling Xu, 2012. "An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 195(1), pages 163-187, May.
    4. Hua Zhu & Jianbin Zhao & Yang Xu & Limin Du, 2016. "Interval-Valued Belief Rule Inference Methodology Based on Evidential Reasoning-IRIMER," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1345-1366, November.
    5. Wan, Chengpeng & Yan, Xinping & Zhang, Di & Yang, Zaili, 2019. "A novel policy making aid model for the development of LNG fuelled ships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 29-44.
    6. Jun Liu & Luis Martinez & Da Ruan & Rosa Rodriguez & Alberto Calzada, 2011. "Optimization algorithm for learning consistent belief rule-base from examples," Journal of Global Optimization, Springer, vol. 51(2), pages 255-270, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J-B Yang & D-L Xu & X Xie & A K Maddulapalli, 2011. "Multicriteria evidential reasoning decision modelling and analysis—prioritizing voices of customer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1638-1654, September.
    2. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    3. Xiaojiao Qiao & Dan Shi, 2019. "Risk Analysis of Emergency Based on Fuzzy Evidential Reasoning," Complexity, Hindawi, vol. 2019, pages 1-10, November.
    4. Kong, Guilan & Xu, Dong-Ling & Body, Richard & Yang, Jian-Bo & Mackway-Jones, Kevin & Carley, Simon, 2012. "A belief rule-based decision support system for clinical risk assessment of cardiac chest pain," European Journal of Operational Research, Elsevier, vol. 219(3), pages 564-573.
    5. Phillips, Jason & Whiting, Kai, 2016. "A geocybernetic analysis of the principles of the Extractive Industries Transparency Initiative (EITI)," Resources Policy, Elsevier, vol. 49(C), pages 248-265.
    6. Guo, Min & Yang, Jian-Bo & Chin, Kwai-Sang & Wang, Hongwei, 2007. "Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1294-1312, November.
    7. Guilan Kong & Lili Jiang & Xiaofeng Yin & Tianbing Wang & Dong-Ling Xu & Jian-Bo Yang & Yonghua Hu, 2018. "Combining principal component analysis and the evidential reasoning approach for healthcare quality assessment," Annals of Operations Research, Springer, vol. 271(2), pages 679-699, December.
    8. Maddulapalli, Anil Kumar & Yang, Jian-Bo & Xu, Dong-Ling, 2012. "Estimation, modeling, and aggregation of missing survey data for prioritizing customer voices," European Journal of Operational Research, Elsevier, vol. 220(3), pages 762-776.
    9. Weidong Zhu & Shaorong Li & Hongtao Zhang & Tianjiao Zhang & Zhimin Li, 2022. "Evaluation of scientific research projects on the basis of evidential reasoning approach under the perspective of expert reliability," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 275-298, January.
    10. Fu, Chao & Yang, Jian-Bo & Yang, Shan-Lin, 2015. "A group evidential reasoning approach based on expert reliability," European Journal of Operational Research, Elsevier, vol. 246(3), pages 886-893.
    11. Dong-Ling Xu, 2012. "An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 195(1), pages 163-187, May.
    12. Fu, Chao & Yang, Shan-Lin, 2010. "The group consensus based evidential reasoning approach for multiple attributive group decision analysis," European Journal of Operational Research, Elsevier, vol. 206(3), pages 601-608, November.
    13. Chaoyu Zheng & Benhong Peng & Xuan Zhao & Anxia Wan & Mu Yue, 2023. "A novel assessment approach based on group evidential reasoning and risk attitude," Group Decision and Negotiation, Springer, vol. 32(4), pages 925-964, August.
    14. Behnam Vahdani & Meghdad Salimi & Seyed Meysam Mousavi, 2017. "A New Compromise Solution Model Based on Dantzig–Wolfe Decomposition for Solving Belief Multi-Objective Nonlinear Programming Problems with Block Angular Structure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 333-387, March.
    15. Zhang, Mei-Jing & Wang, Ying-Ming & Li, Ling-Hui & Chen, Sheng-Qun, 2017. "A general evidential reasoning algorithm for multi-attribute decision analysis under interval uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1005-1015.
    16. Liu, Jiapeng & Liao, Xiuwu & Yang, Jian-bo, 2015. "A group decision-making approach based on evidential reasoning for multiple criteria sorting problem with uncertainty," European Journal of Operational Research, Elsevier, vol. 246(3), pages 858-873.
    17. Divya Choudhary & Ravi Shankar & Alok Choudhary, 2020. "An Integrated Approach for Modeling Sustainability Risks in Freight Transportation Systems," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 858-883, April.
    18. Chao Fu & Dong-Ling Xu, 2016. "Determining attribute weights to improve solution reliability and its application to selecting leading industries," Annals of Operations Research, Springer, vol. 245(1), pages 401-426, October.
    19. Sadeghi, Aliasghar & Farhad, Hamid & Mohammadzadeh Moghaddam, Abolfazl & Jalili Qazizadeh, Morteza, 2018. "Identification of accident-prone sections in roadways with incomplete and uncertain inspection-based information: A distributed hazard index based on evidential reasoning approach," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 278-289.
    20. Gao, Bin & Ni, Ming-Fang, 2009. "A note on article "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 809-812, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:163:y:2008:i:1:p:143-168:10.1007/s10479-008-0327-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.