IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1627-d1365928.html
   My bibliography  Save this article

A Dependability Neural Network Approach for Short-Term Production Estimation of a Wind Power Plant

Author

Listed:
  • Fabio Famoso

    (Department of Engineering, University of Messina, 98166 Messina, Italy)

  • Ludovica Maria Oliveri

    (Department of Electrical, Electronic and Computer Engineering, University of Catania, 95125 Catania, Italy)

  • Sebastian Brusca

    (Department of Engineering, University of Messina, 98166 Messina, Italy)

  • Ferdinando Chiacchio

    (Department of Electrical, Electronic and Computer Engineering, University of Catania, 95125 Catania, Italy)

Abstract

This paper presents a novel approach to estimating short-term production of wind farms, which are made up of numerous turbine generators. It harnesses the power of big data through a blend of data-driven and model-based methods. Specifically, it combines an Artificial Neural Network (ANN) for immediate future predictions of wind turbine power output with a stochastic model for dependability, using Hybrid Reliability Block Diagrams. A thorough state-of-the-art review has been conducted in order to demonstrate the applicability of an ANN for non-linear stochastic problems of energy or power forecast estimation. The study leverages an innovative cluster analysis to group wind turbines and reduce the computational effort of the ANN, with a dependability model that improves the accuracy of the data-driven output estimation. Therefore, the main novelty is the employment of a hybrid model that combines an ANN with a dependability stochastic model that accounts for the realistic operational scenarios of wind turbines, including their susceptibility to random shutdowns This approach marks a significant advancement in the field, introducing a methodology which can aid the design and the power production forecast. The research has been applied to a case study of a 24 MW wind farm located in the south of Italy, characterized by 28 turbines. The findings demonstrate that the integrated model significantly enhances short-term wind-energy production estimation, achieving a 480% improvement in accuracy over the solo-clustering approach.

Suggested Citation

  • Fabio Famoso & Ludovica Maria Oliveri & Sebastian Brusca & Ferdinando Chiacchio, 2024. "A Dependability Neural Network Approach for Short-Term Production Estimation of a Wind Power Plant," Energies, MDPI, vol. 17(7), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1627-:d:1365928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guangyu Qin & Qingyou Yan & Jingyao Zhu & Chuanbo Xu & Daniel M. Kammen, 2021. "Day-Ahead Wind Power Forecasting Based on Wind Load Data Using Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    2. Famoso, Fabio & Brusca, Sebastian & D'Urso, Diego & Galvagno, Antonio & Chiacchio, Ferdinando, 2020. "A novel hybrid model for the estimation of energy conversion in a wind farm combining wake effects and stochastic dependability," Applied Energy, Elsevier, vol. 280(C).
    3. Ramasamy, P. & Chandel, S.S. & Yadav, Amit Kumar, 2015. "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, Elsevier, vol. 80(C), pages 338-347.
    4. Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadashi Hosoe & Kazuto Yukita, 2024. "A Study on Wind Collection Effect of Vertical Axis Windmills," Energies, MDPI, vol. 17(23), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    2. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    3. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    4. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    5. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    6. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    7. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    8. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    9. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    10. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    11. Hannah Jessie Rani R. & Aruldoss Albert Victoire T., 2018. "Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-35, May.
    12. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    13. Zhiyan Zhang & Aobo Deng & Zhiwen Wang & Jianyong Li & Hailiang Zhao & Xiaoliang Yang, 2024. "Wind Power Prediction Based on EMD-KPCA-BiLSTM-ATT Model," Energies, MDPI, vol. 17(11), pages 1-15, May.
    14. Kirchner-Bossi, N. & Prieto, L. & García-Herrera, R. & Carro-Calvo, L. & Salcedo-Sanz, S., 2013. "Multi-decadal variability in a centennial reconstruction of daily wind," Applied Energy, Elsevier, vol. 105(C), pages 30-46.
    15. Sareen, Karan & Panigrahi, Bijaya Ketan & Shikhola, Tushar & Sharma, Rajneesh, 2023. "An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction," Energy, Elsevier, vol. 278(C).
    16. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
    17. Sameer Al-Dahidi & Piero Baraldi & Miriam Fresc & Enrico Zio & Lorenzo Montelatici, 2024. "Feature Selection by Binary Differential Evolution for Predicting the Energy Production of a Wind Plant," Energies, MDPI, vol. 17(10), pages 1-19, May.
    18. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    19. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    20. Adam Zagubień & Katarzyna Wolniewicz & Jakub Szwochertowski, 2024. "Analysis of Wind Farm Productivity Taking Wake Loss into Account: Case Study," Energies, MDPI, vol. 17(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1627-:d:1365928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.