IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1744-d116915.html
   My bibliography  Save this article

Advanced Wind Speed Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural Network

Author

Listed:
  • Athraa Ali Kadhem

    (Department of Electrical and Electronic Engineering, University Putra Malaysia, Selangor 43400, Malaysia)

  • Noor Izzri Abdul Wahab

    (Department of Electrical and Electronic Engineering, University Putra Malaysia, Selangor 43400, Malaysia)

  • Ishak Aris

    (Department of Electrical and Electronic Engineering, University Putra Malaysia, Selangor 43400, Malaysia)

  • Jasronita Jasni

    (Department of Electrical and Electronic Engineering, University Putra Malaysia, Selangor 43400, Malaysia)

  • Ahmed N. Abdalla

    (Faculty of Electronics Information Engineering, Huaiyin Institute of Technology, Huai’an 223003, China)

Abstract

One of the most crucial prerequisites for effective wind power planning and operation in power systems is precise wind speed forecasting. Highly random fluctuations of wind influenced by the conditions of the atmosphere, weather and terrain result in difficulties of forecasting regardless of whether it is short-term or long-term. The current study has developed a method to model wind speed data predictions with dependence on seasonal wind variations over a particular time frame, usually a year, in the form of a Weibull distribution model with an artificial neural network (ANN). As a result, the essential dependencies between the wind speed and seasonal weather variation are exploited. The proposed model utilizes the ANN to predict the wind speed data, which has similar chronological and seasonal characteristics to the actual wind data. This model was applied to wind speed databases from selected sites in Malaysia, namely Mersing, Kudat, and Kuala Terengganu, to validate the proposed model. The results indicate that the proposed hybrid artificial neural network (HANN) model is capable of depicting the fluctuating wind speed during different seasons of the year at different locations.

Suggested Citation

  • Athraa Ali Kadhem & Noor Izzri Abdul Wahab & Ishak Aris & Jasronita Jasni & Ahmed N. Abdalla, 2017. "Advanced Wind Speed Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural Network," Energies, MDPI, vol. 10(11), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1744-:d:116915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1744/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1744/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    2. Liu, Hui & Chen, Chao & Tian, Hong-qi & Li, Yan-fei, 2012. "A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks," Renewable Energy, Elsevier, vol. 48(C), pages 545-556.
    3. Masseran, N. & Razali, A.M. & Ibrahim, K. & Wan Zin, W.Z., 2012. "Evaluating the wind speed persistence for several wind stations in Peninsular Malaysia," Energy, Elsevier, vol. 37(1), pages 649-656.
    4. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    5. Ramasamy, P. & Chandel, S.S. & Yadav, Amit Kumar, 2015. "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, Elsevier, vol. 80(C), pages 338-347.
    6. Peng, Huaiwu & Liu, Fangrui & Yang, Xiaofeng, 2013. "A hybrid strategy of short term wind power prediction," Renewable Energy, Elsevier, vol. 50(C), pages 590-595.
    7. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    8. Safari, Bonfils & Gasore, Jimmy, 2010. "A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda," Renewable Energy, Elsevier, vol. 35(12), pages 2874-2880.
    9. Athraa Ali Kadhem & Noor Izzri Abdul Wahab & Ishak Aris & Jasronita Jasni & Ahmed N. Abdalla, 2017. "Reliability Assessment of Power Generation Systems Using Intelligent Search Based on Disparity Theory," Energies, MDPI, vol. 10(3), pages 1-13, March.
    10. Doucoure, Boubacar & Agbossou, Kodjo & Cardenas, Alben, 2016. "Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data," Renewable Energy, Elsevier, vol. 92(C), pages 202-211.
    11. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    12. Li, Gong & Shi, Jing & Zhou, Junyi, 2011. "Bayesian adaptive combination of short-term wind speed forecasts from neural network models," Renewable Energy, Elsevier, vol. 36(1), pages 352-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. So-Kumneth Sim & Philipp Maass & Pedro G. Lind, 2018. "Wind Speed Modeling by Nested ARIMA Processes," Energies, MDPI, vol. 12(1), pages 1-18, December.
    2. Liu, Guangbiao & Zhou, Jianzhong & Jia, Benjun & He, Feifei & Yang, Yuqi & Sun, Na, 2019. "Advance short-term wind energy quality assessment based on instantaneous standard deviation and variogram of wind speed by a hybrid method," Applied Energy, Elsevier, vol. 238(C), pages 643-667.
    3. Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
    4. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    5. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    6. Domenico Palladino & Iole Nardi & Cinzia Buratti, 2020. "Artificial Neural Network for the Thermal Comfort Index Prediction: Development of a New Simplified Algorithm," Energies, MDPI, vol. 13(17), pages 1-27, September.
    7. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    8. Erick López & Carlos Valle & Héctor Allende & Esteban Gil & Henrik Madsen, 2018. "Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory," Energies, MDPI, vol. 11(3), pages 1-22, February.
    9. Hugo T. V. Gouveia & Murilo A. Souza & Aida A. Ferreira & Jonata C. de Albuquerque & Otoni Nóbrega Neto & Milde Maria da Silva Lira & Ronaldo R. B. de Aquino, 2023. "Application of Augmented Echo State Networks and Genetic Algorithm to Improve Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(6), pages 1-15, March.
    10. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    11. Jianguo Zhou & Xuechao Yu & Baoling Jin, 2018. "Short-Term Wind Power Forecasting: A New Hybrid Model Combined Extreme-Point Symmetric Mode Decomposition, Extreme Learning Machine and Particle Swarm Optimization," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    12. Navid Shirzadi & Fuzhan Nasiri & Ramanunni Parakkal Menon & Pilar Monsalvete & Anton Kaifel & Ursula Eicker, 2023. "Smart Urban Wind Power Forecasting: Integrating Weibull Distribution, Recurrent Neural Networks, and Numerical Weather Prediction," Energies, MDPI, vol. 16(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    2. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    3. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    4. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    5. José Carlos Palomares-Salas & Agustín Agüera-Pérez & Juan José González de la Rosa & José María Sierra-Fernández & Antonio Moreno-Muñoz, 2013. "Exogenous Measurements from Basic Meteorological Stations for Wind Speed Forecasting," Energies, MDPI, vol. 6(11), pages 1-19, November.
    6. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    7. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    8. Zhang, Chi & Wei, Haikun & Zhao, Junsheng & Liu, Tianhong & Zhu, Tingting & Zhang, Kanjian, 2016. "Short-term wind speed forecasting using empirical mode decomposition and feature selection," Renewable Energy, Elsevier, vol. 96(PA), pages 727-737.
    9. He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.
    10. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    11. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
    12. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    13. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    14. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    15. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    16. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    17. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    18. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    19. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang & Zhang, Yixin, 2015. "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 78(C), pages 374-385.
    20. Ait Maatallah, Othman & Achuthan, Ajit & Janoyan, Kerop & Marzocca, Pier, 2015. "Recursive wind speed forecasting based on Hammerstein Auto-Regressive model," Applied Energy, Elsevier, vol. 145(C), pages 191-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1744-:d:116915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.